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Introduction

For improved care of patients with acute lung injury, existing clinical data sets are
examined to characterize quantitativély the pulmonary pressure-volume (p-V) curves. A
mechanistic model of the total respiratory system (TRS) is constructed for both the in-
flation and an ideal deflation process. The mechanistic model computationally simulates
changes in the TRS based on an application of statistical mechanics to a very large number
of elements comprising the TRS. Based on the model, various shapes of the p-V curves

are related to the corresponding changes in intrarespiratory conditions, as well as to the

magnitudes of p-V curve parameters.




Body

Research contents are reported in four chapters:
Chapter 1. Quasi-Static-Pressure—Voiume Curve: Comprehensive Data Analysis
reports results corresponding to
Objective 1 (Examination of accuracy and limitations of the sigmoidal equation),
Objective 2 (Development of a method for quantitative characterization of p-V curves),
in Statement of Work of Research Proposal.
Chapter 2. Mechanistic Model: Part I. Model Development for Inflation Process
reports
derivation of the mechanistic model for the inflation corresponding to
Objective 3 (Development of a mechanistic respiratory model)
in Statement of Work of Researc}; Proposal.
Chapter 3. Mechanistic Model: Part II. Examination of Clinical Data
reports
examinations of p-V inflation curves based on the mechanistic model as part of
Objective 2 and 3
in Statement of Work of Research Proposal.
Chapter 4. Mechanistic Model: Part ITI. Deflation Process
reports
development of mechanistic model of an ideal deflation process comparisons with the
measured data sets as part of '

Objective 2 and 3

in Statement of Work of Research Proposal.




Chapter 1. Quasi-Static Pressure-Volume Curve:

Comprehensive Data Analysis

Abstract

A p-V model equation with four parameters is used to represent various existing (p-V)
curves. The report is focused on the case in which the equa.ti?n is applied to two. existing
groups of p-V data (one, twenty nine p-V curves of healthy adults and the othef, twenty
one p-V curves of patients with acute respiratory distress syndrome) to determine the
magnitudes of the parameters for each data set. The equation is found to i‘epresent the p-
- V curves of both data groups extremely well. It is also conﬁrmed that the magnitudes of the
four parameters of the error function p-V model equation, combined with the corresponding
normalized representation of p-V curves, quantitatively distinguish different respiratory

conditions between the two groups as well as between different .data sets in each group.
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pressure (interpleural pressure difference)
(volume-) gradient pressure range, Eq.(3)

lower (upper) corner pressure, Eq.(4)

 pressure at maximum compliance increase (decrease), Eq.(5)

' pressure at the inflection point (at the maximum local compliance)

where V = (Vi + V;)/2 |
non-dimensional pressure, p/pg — 1
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Acronyms:
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app AV (non-dimensional parameter) (Eq.(1b)) -
Ap/2 (Eq.(1b))

acute respiratory distress syndrome
lower inflection point, Eq.(6)
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Introduction

Qua.si-static pulmonary p;V (pressure - volume) curves provide quantitative informa-
tion on the respiratory system that is important for both research and clinical guidances.
A typical inflation p-V curve, obtained for an anesthetized human subject in supine posi-
_tion, consists of a near.ly linear region of high complia,ncve (i.e. large dV/dp) sandwiched
between two segments with low compliance at low .and high pfessure regions. The shape
of the curve is affected by two mechamsms, the distension of the elastic respiratory wall
tissue cdmponents and the recruitinent of the alveoli (‘pop-open’ mechanism). The latter
is the opening of alveoli overcoming the surface temsion at the interface between the gas
and the liquid film lining the alveolar surface. A pressure increase (i.e. an increase in the
interpleural pressure difference) results in the recruitment of a greater number of alveoli.
The high compliance is believed to Be éssociated with both the distension of open parts -

and the (alveolar) recruitment of collapsed parts of the total respiratory system (TRS).

In order to quantify the characteristics of p — V curves as well as their changes ob-
served in clinical settings, various p-V model eQuati;)ns have been proposed {1 - 8]. One
commonly used model equation is developed by dividing the entire p-V curve intb three
regions, a high-pressure, low-compliance upper region, a high-compliance midregion and
a low-pressure, low-compliance lower region. The midregion is represented by a linear
equation between p and V;'while, the two low-compliance regions are 'a;pproximated by
an exporiential function of pressure [9, 10]. The linear-exponential model equation is a
piecewise continuous function with the compliance abruptly changing its magnitude at the
intersects of the linear and the exponential regions. Venegas, Harris and Simon (8], on
the other hand, showed that a single continuous function in a form of sigmoidal (tangent
‘hyperbolic) equation represents various p-V curves extremely well. Parameters in model
equations (both piecewise-continuous and céntinuous equa,tidns) are determined from sta-
tistical processing of clinical data. More recently the clinical useﬁllnéss of the sigmoidal

model equation over piecewise-continuous representations is also reported by the same
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group of researchers [11].

- Accurate and quantitative determinations of the form of P-V model equation and
its parameters are prerequisite to the- clinical interpretations of p-V curves, including an
establishment of ventilator strategy with the p-V curve guidance in intensive care for
patients with acute Iung injury as well as its more severe form, acﬁte respiratory distress
syndrome (ARDS) (12 - 14]. Our ob'jectivév is'to test a hypothesis that the continuous
p-V model equation, particularly in a form of an error function equation, is effective in
representing p-V cﬁrves from different sources, and of different respira‘pory conditions (a
group of patients with ARDS [8] and a'group of healthy adults [9]). The former covers both
inflation and deflation pro_cesées, and the latter includes the inflation p-V curves before and
aftér alveolar recruitment maneuver with a total of fifty p-V curves. The report examines

differences and similarities (1) between patients with ARDS and healthy adults, (2) among
patients with ARDS as well as among healthy adults, both in terms of parameters of the
error function p-V model equation.
Equations for Quasi-Static p-V Curves

A model equation, originally proposed by Venegas, Harris and Simoﬁ (8] and subse-
qﬁeﬁtly shown to represenf p-V curves well for both inflation and deflation processes [11],

has the following sigmoidal (tangent hyperbolic) form;

5 =l tean(-adV o-p)] T (0

where AV = V; -V, Vy = upper volume asymptote, V1, = lower volume asymptote, o =
positive constant and py = pressure at the midpoint (inflection point) of the curve. The

 corresponding non-dimensional form of the sigmoidal e_Quation is [15],

dv A 2 - eY—gew _ ' '
F ...—-2—(V -1), V_m(— tanh (w)) (10)
where ’ :
7 V—-(VU+VL)/2’ w=Ap p

AV/2




Venegas, Harris and Simon suggested that a p-V equation in terms of the error function
is also effective in representing p-V data [8].

The error function, erf(z), is defined as

rf@) == [ eFh with  erfo0)=1, erf(~2) = —erfla).

The error function model equation may be expressed as

. | L
% = ngl/lemp[—(\/TEaAV(p - po))z], . VA‘;/L = %[1 +erf(-‘£—EAﬁ)], (2a)
%—; :.%-e:z;p(-—%wz), V:erf(—éjw). : : S : (Zb)

Fig.1is a sketch of a typical p-V model equation (either the sigmoidal or the error—functién
model equation). The curve varies smoothly between the low pressure asymptote, V;, and
the high pressure asymptote, Vi;. The midpoint of the curve where the volume is equal to
(Vu + VL) /2 is ﬁhe inflection point with its pressure denoted by pg. Bofh the sigmoidal and
the error-function model equationé are antisymmetric with respect to the inflection point;
that is, V'(p — po) — V(po) = —(V(po — p) — V(po)) or V(p) = —=V(—5). The compliance,
dV/dp, increases along the p-V equation as pressure increases, until the inflection point
(= the point of maximum compliance) is reached. Then the compliance decreases with a
further increase in pressure. A tangent to the model equation curve at the inflection point

has the compliance of a(AV)?/4. The two points of intersection between the tangent

and the two volume asymptotes, V = Vi and V = V}, are referred to as the upper and

. lower corner pressure, Peulcl), Tespectively. The pressure difference between the two corner

pressures is defined as the (volume-) gradient pressure range, pgrqq. Also, the pressuré at
the point of maximum compliance increase (decrease) of the p-V curve, pmei (Pmed ), may
be specified as the points where the third derivative of V with respect to P is zero.

For both the sigmoidal and the error-function model equations,

Pgrad | __ AV 4 — | Dcu(cl) N 2
= = -y " = —_ 1 = {—)——. 3, 4
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On the other hand,

~ DPmed(mei) (=)1.317/A for sigmoidal equation;
Pmed (mC‘L)(= - = 1) =

Py (—=)1.596/A for error-function equation. (5)

Fig.2 is the (non-dimensional) p — V curve, corresponding to the p-V curve of Fig.1.
The origin (5 = 0, V = 0) represents the point of antisymmetry (po, (Vu +VL5)/2) of Fig.1.
The non-dimensioﬁal pressure, P, is the.pr'essure differencé, P — Do, as a fraction of pg
(Eq.(1b). The normalization of volume shifts the upper and the lower volume asymptotes,
Vv and V, in Fig.1 into +1 and —1 respeétively in Fig.2. With both the location of py -
and the volu.rcie asymptotes made common to all p-V curves, the resulfing non-dimensional
representations characterize p-V cufves in general in terms of a single non-dimensiorial
parameter, A. (Eqgs.(1b,2b)) From Eq.(3) the parameter, A, is four times the ratio of the
pressure at the maximum éompliance, Do, to the vohime—gradient pressure range, Pgrad-.
Since the compliance is maximum at the origin, the first quadrant (V, 5 > 0) in Fig2isa
region 'of decreasing local compliance with pressure; while, the third quadrant (V, 5 < 0)
is a region of increasing local compliance with pressure. The origin =0,V =0)of
dimensional p-V curves is transformed into (5 = —1, V(V = 0)) on a 5-V curve; hence,
the physiological lower limit of 7 is —1. Various pressure locations on P- Vv d1agram are
proportional to 1/A as shown i in Egs. (3—5) Eqs (3-5) also imply over the pressure range
ofp >0 that there is no lower corner pressure (i.e 1 +7, < 0) if A < 2, and that there
is 10 pressure for maximum compliance increase (i.e. 1 +7,,,; < 0) if A < 1.317(1.596)
for the sigmoidal (error-function) model equation. Both the sigmoidal and the error-
function model equations are capable of representing p-V curves over their entire rarfgés
as continuous functions.

Piecewise-continuous model- equations are also used to represent p-V curves. Shown
below is a three-region model equation [9], relevant to the present study, consisting of a
linear midregion (Vz7p < V < Viyrp) and two exponential regions at high (Vyrp < V) and

low pressure (V' < Virp) ranges. (The subscripts, L(U)IP (lower (upper) inflection point),
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. indicate the points where the linear midregion equation intersect with the exponential

equations.)

' ' Vinaz — V2 ‘
Vma:z: - V(P) = (Vma.:x: - VUIP) ' ewp(ﬂa;ﬂ' (p - pUIP))

| for Vyrp SVSViﬁsuff,

. V(p) = Viip = Ciin (p—pr1P) for Virp SV < Vyrp, (6)
Vimin = V(p) = (Vmin — Virp) - EfEP(YH%-@E (p "‘PLIP)) for V< Virp,
where Cjin, = compliance at the linear midregion, Vm,-n(mu): volume asymptote of the

lower (upper) exponéntial region,
Data Analyses
The two data sources with-a total of 50 p-V data sets consists of (A) ARDS patients
by Harris et al (2000) [11], and (B) healthy adults by Svantesson et al (1998) [9]. For the
* data source A, p—V data points Awere made available to us by the authors. The data source
B provides model parameters of the piecewise-continuous model equation, Eq.(6), as well
as data ranges for each data set. Information on the data sources relevant to the present
study is summarized below.
Data Source A ' _ .
21 data sets of ARDS patients bvaarris, Hess, Venegas [11], Original p-V data points
made available by the authors, Inflation and deflation data in stlf)ine -position.
Data Source B
29 data sets of healthy adults (both male and female) by"Sva.nte‘sson, Sigurdsson,
Larsson, Jonson (9], 14 data sets before and 15 data sets after al%/eolar- recruitment
maneuver, Inflation data in supine position
The parameters of Eq.(6) (Vinin, Vmaz, Vire, Vurp, Vinsus £ Clin, PLIP, PUIP) are
tabulated for all data sets in [9]. |
Data sets from the source A are analyzed by minirrﬁzing the diffefence between data

points and the model equation (either the sigmoidal or the error-function model equation)
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th.rough.the application of the method of least squares to obtain the parameters, A, AV, p,
and Vy (or V). To analyze the daté source B, ten to twenty five computational data
points, depending on the data range, are generated from Eq.(6). Then, the method of
least squares is applied to determine‘the parameters, A, po, AV and Vi (or Vz) of the
error function model equation. Parameters of p-V model equations are determined for all
data sets in Data Source A (for both inflation and deflation data) and B (for both before-
and after—recruitment maneuver). Discussion beyénd the validity test of the error function .
model équatibn, however, is .focused'on_the inflation data sets of the two data sources.
Results of data analyses are summarized in Table.1 (for Data Source A) and in Table.2
(for Data Source B).

Results and Discussion }

Fig.3 shows a typical data set of an ARDS patient from the data source A as well
as the sigmoidal and the error function model equations, Egs.(1a)(2a), determined by the
method of leasf. squares. The parameters of the model equations, (A, po, AV, V), are
(1.47b, 13.308, 3.491, 2.750) for the sigmoidal equation and (1.627, 13.324, 3.156, 2.584)
for the error function equation. Both equations represent the data points well over the
entire data range. Substantial differences between the two equations occur in high and
low pressure regions away from the data, range as they approach diﬁ'efent asymptotes of
V = 'VU and V. It should also be noted that there is no loWer corner pressure for the data
set since A is less than 2 (Eq.(4)), and that the pressure at maximum compliance increase,
pm_c;, is very low at 1.385 cmH,0 for the sigmoidal model equation and at 0.254 cmH,0
for the error function equation (Eq.(5)).

An example‘of the analysis of the data source B is shown in Fig.4. The dotted curve

Tepresents the piecewise continuous equation, Eq.(6), with

(Vimins Vinaz, VL1p, Vuip, Vinsussr Clin, PriP, PUIP)
= (2230 [mL], 5870, 1513, 2884, 4125, 157 [mL/cmH,0], 14.4 [emH, 0], 23.1),

reported in [9]. The solid curve is the corresponding error function model equation, Eq.(2a),
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~ obtained by applying the method of least squares to computational data points generated
over the data range of 0 < V < Vipou 7f- Since “true” data points are unknown in the
linear region of Eq.(6), we imposed a constraint that the inflection point, pg, of the error
function equation is located in the midregion of Eq.(6). The parameters of the error
function equation thus determined are (A, ?o, AV, Vi) =(2.0800,18.22_4,5.58750, 4.9114).
Due to the error minimization Eq.(2a) is nearly identical to Eq.(6) over the data range
indicated by the two triangle' marks; which is valid for other 28 data sets from Data Source
B. A continuous change of the compliance (i.e. non-linear p-V change) in the region near
po has been described previously in terms of the sigmoidal (tangent hyperbolic) model
equation [15]. It should also be mentioned here that, of twenty nine inflation data sets,
o (the inflection point) is between py;p and pyrp in eighteen data sets, equal to pU'; pin

eight data sets, equal to pf, p in one data sét, and po = pyrp = prrp in two data sets.

Fig.5. is a plot of the error function equation, Eq.(2a), with /7 A(p/p — 1)/4 and
(V = VL)/AV as x- and y- axis respectively. All (both inflation and deflation) data I;Oints
of Data Source A are also.shown in the figure, confirming very good agreements with
the equation. The coefficient of determination, R2, is 0.99-9247, which is comparable:in
magnitude to that of the sigmoidal equation, R? = 0.9992 réported in 11}, thus indicating |
that both the sigmoidal (tangent hyperbolic) p-V equation, Eq.(1a), and the error function
equation, Eq.(2a), are very effective in representing quasi-static p-V curves. Shown in Fig.6
are comparisons between the sigmoidal equation and the error function equation in terms
of two parameters in the equations, A '(Fig.6(é.)) and po (Fig.6(b)) for twenty one data sets
from Data Source A. Due to differences in functional form the magnitude of A is slightly
higher for the error functioh equation than for the sigmoidal equation. On the other
hand, the inflection point, py, being the point of antisymmetry, should be identical in
theory for both model equations. Fig.6(b) confirms it as the magnitudes of po determined
by the method of least squares are very close between the two equations. Differences in

the magnitudes of A and py between the two continuous-function model equations would
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result in function-specific values for such quantities as p, (cl)r Pmed (mei) of Egs.(4,5) which
characterize p-V curves, indicating the importance of using the same p-V model equation

in order to analyze clinical data in a consistent manner.

Although quantitative éomﬁarisons of parameters cannot be made among different
p-V model equations in a mathematically rigorous manner, a comparison between the
linear-exponential model equation, Eq.(6), and the error function equation, Eq.(?a), is
presented in Fig.7 in a form of ppe; vs prrp in Fig.7 (a) and pmeq vs purp in Fig.7 (b) for
Data Source B. It may be seen that the -paramefers from both equations distinguish two
data groups, Before recruitment‘—maneui/er and After recruitment maneuver, successfully
and also that pp,.q of Eq.(2a) and py;p of Eq(6) distinguish the two groups more clearly
than ppme; and prrp. Values of pyrp (v1p) must be located directly from p-V curves; while,
Pmei (med) ére automatically generated from the model equation once parameters of the

model equation are determined.

As shown in Egs.(2a,b), Wheil pand V ‘are made non-dimensional the reé’ulting non-
dimensional p-V equation, Eq.(2b), contains A (=the ratio of (pey — pet) to Do) as the only
paraméter representing a shape of  — V curves with A/2 being the gradient, dV/dp, at
- the origin (where = 0 i.e. p = po.). The pdV work associated Wfth the process from

the initial to the end-of-inflation pressure was suggested as a quantity representing the
pressure range actuaily covered by a specified p-V curve [15]. However, in analyzing data
sets from different sources we found that the end-of-inflation pressure ’(volume) is ciata'-(or
'investigator-) dependent, and may not be appropriate as a comprehensive indicator for.
data interpretation. Here we selected two volume differences to distinguish p-v data sets
-accounting for the range of data relative to the entire range covered by the p-V equation;
one is Vy — V(p = 0) as a volume scale indicating the total available volume of a specified
TRS, and the other is V(p = 20 cmHzQ) —V(p = 0) as a volume scale representing volume
range covered by the specified TRS. The volume at p = 20 cmH,0 is'selected arbitrarily;

however, in all the data sets we analyzed, p-V curves were obtained beyond p = 20 emH. 2 0.
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Fig.8 shows A vs po in (a) and [Viy — V(p = 0)] vs [V (p = 20cmH,0) -V (p = 0)] in (b)
obtained from the error function model equation for all inflation data sets. In terms of A,
a wide range (1 < A < 6) is covered by ARDS patients; while, the range of A for healthy
adults is ~ 1.5 — 3.5. The alveolar recruitﬁent maneuver lowers the magnitude of A of
the group of healthy adults as a whole. A similar observation may be made on Po- Both
[Vu =V (p=0)] and [V(p = 20cmH,0) — V(p = 0)] in Fig.8(b) are low in magnitude for
patients with ARDS. On the other hand, the recruitment maneuver shifts the location of
the whole group to ;‘,he right in Fig.8(b). Two data sets, No.20 and 5, representing extreme
points in Fig.8 (a) and (b) respectively, clearly show they a.fe quite different from those of

‘healthy adults, if Fig.8(a) and (b) are examined together.

According to Data Source B [9], after a p-V curve before vthe iecruitmeﬁt maneuver
is recorded, the lungs are inﬂ‘alted to an airway pressure of 40 cmH,0O and maintained for
15 s, followed by six pressure-controlled breaths (six breaths/min.) delivered at an airway
pressute of 30 cmH,0. Then a sécond large insufflation is delivered before recording a
p-V curve after recruitment maneuver. To examine the p-V curves of healthy adults as -
well as effects of the alveolar recruitment maneuver in more deté,il, a ratio of the pressure
at the inflection point, (pg (befofe maneuver)/pg (after manem}e'r)),‘ is plotted against
a ratio of A (A (before maneuver)/A (after maneuver)) in Fig:9. Each data point is
accompanied by two numbers indicating the data set number and his or her age in the
bracket (unfilled circle for male and filled circle for female). The da.fa sets of the ybunger |
may be seeﬁ to be located to the left half of the figure, compared to the older, implying
that, for the healthy young adults, A after the maneuver either increases slightly or remains
roughly the same as A before the maneuver. In order to discuss implications of Fig.9
further, Figs.lO-and 11 show the error 'fuﬁctidn p-V equations before- and after-maneuver
along with the corresponding non-dimensional pT—V equations for three data sets in Fig.10
from the region of A (before maneuver)/ A (after maneuver) <~ 1.2, and for three data

sets in Fig.11 from the region of A (before maneuver)/A (after maneuver) >~ 1.2. The
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equations are plotted over the measurement range covered by Data Source B. Numerical

values of these data sets are tabulated below.

Data No. (Age) 1(33) 6(25) 7(60) 11 (55) 13(50) 15 (58)
A(before)/A(after) 0730 0.982 1.143 1.390  1.303 1.625
po(before)/po (after)  1.726  1.196 1.840 1.312 2.083 1.753

Referring to Fig.10, the high py ratios of Data 1 and 7, compared to Data 6, are results of
substantial reduction in py after the maneuver for these data sets as observed in the p-V
equations. The triangular marks on the 5 — V curves in Figs.10 and 11 indicate locations
of p = 20cmH30; hence, on  ~ V diagrams, a large change in py is reflected by a large
shift of the triangle from the before-recruitment location to the after-recruitment location.
Different degrees of changes in the magnitude of A over the alveolar recruitment maﬁeuver
for the three data sets cannot directly be observed from the p-V diagrams. However, on the
P~V diagrams, A/2 is the slope of 5— V equation at the origin.( See Eq.(2b).) Therefofe,
the before-recruitment (solid) curve lies above the after-recruitment (dotted) curve in the
third quadrant (p < 0, V < 0) for Data 1 for which A(before) = 0.730 - A (after). For
Data 6 with A (before) being close to A (after) two curvés are nearly identica.l. In Data 7
the after-recruitment curve lies slightly above the before-recruitment curve as A (before) =
1.143- A (after). The data sets in Fig.11 all have the two ratios well above unity with the
high A ratios resulting in the after-recruitment curves to lie abovel the before-recruitment -
curves, and the high py ratios of Data 13 and 15 being reflected in the large shifts in
triangles between the two curves in the 5 — V diagram.

From Eq.(2a) the maximum local compliance (= dV/dp at p = Po) may be expressed as

(7)

Fig.12 is a plot of [dV/dp (p = po) after recruitment maneuver| vs [dV/dp (p = py) before
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recruitment maneuver] of Data Source B. Changes in the maximum local compliance (=
compliance at the inflection point) are small between before- and after-recruitment data
with a maximum change of less than 0.035 [L/cmH,0]. It should be mentioned again that
the local compliance like other parameters mé,y be obtained mathematically in a continuous
p-V model equation, once the parameters of the equation are determined for a specified
p-V curve.

Depicted in Fig.13 are p-V curves and the corresponding p — V' 6urves of four rep-
resentative data sets of patiénts with ARDS, drawn over their measurement ranges. The
non-dimensional p — V curves in Fig.13(b), which, we believe, are more useful for data
examinations and interpretations, yield the following. observations: |
(1.) The magnitude of A, which is represented by the slope of a 5 — V curve, is the lé,rgest
for Data 20, and the smallest for Dat@ 4,

(2.) Since the origin of a p -V curve is the location where the local compliance is the
maximum (i.e. p = Do), Data 4 and 17 extend V\}ell into the region of decreasing compliance,
while, the pressure range of Data 13 is limited to the region of increasing complié,nce.
(3.) At p=20cmH,0 (shown as a tri,angle), the compliance is still increasing for Data 13
and 20, close to the maximum for Data 17 and decreasing for Data 4.

(4.) The two volume asymptotes, .VU and Vi, are transformed respectively into V' = 1.0
and —1.0; hence, the volume range of Data 13 is closer to the lower asymptote, while,
the overall volume change of Data 4 is small compared to AV (difference between the
asymp,tofes) .

Furthermore the magnitude of A in Table 1 indicates that there is no lower corner
pressure for Data 4. For each inflation data set, Table 1 lists the maximum local compli-
ance. Its value ranges between 0.03 and 0.11 [L/cmH,0); much smaller values compared
to the data from healthy adults shown in Fig.12. The maximum local compliance, as .
- shown in Eci.(?), is proportional to the product of A and AV, and inversely proportional

to pressure at the inflection point. Since both A and py are roughly in the same order of
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magnitude as healthy adults (Fig.8), the factor contributing most to smaller values of the
maximum local compliance for patients with ARDS is AV as evidenced by its values listed
in Table 1 and 2.

Summary and Conclusions

The signioidal (tangent hyperbolic) equation is known to represent various quasi-static
p-V curves very closely [11]. In the present stud,;y it has beenAs_hown that the error function
mbdel equation-also represents quasi-static p-V curves well (Figs.4,5). Major parameters
~of both the sigmoidal (tangent hypérbolic) and the error function model equations are
the non-dimensional compliance, A, the maximum local compliance, pg, the upper (or
lower) volume asymptote, Vu (V1), and the maximum volume available for inflation, AV.
_ Although both continuous model equations aré antisymmetric with respect to pg, the non-
dimensionai parameter, A, as well as two volume asymptotes slightly differ between the
two equations as those function-specific parameters are selected to follow a specified p-
V curve as closély as possible (Fig.6). Two inflation data sources, patients with ARDS
(Data Source A) and healthy adﬁlts (Data Source B), are analyzed in detail using the error

i

function p-V model equation with the following results;
1. The alveolar recruitment maneuver lowers the pressure at the maximum compliance,
Po; while, A remains roughly the same or decreases in magnitude (Figs.B(a), 9). It also
reduces the upperv vblume asymptote, Vi, substantially (Fig.8(b)). The combined effects
of these parametric changes due to the maneuver extend the range of p—.V curves after the -
maneuver further into the region beyond the location of the maximum compliance (Figs.10,
11).°

2. The range of pg ?,nd A covered by the patients with ARDS is wider than the corre-
sponding ranges of healthy adults (Fig.8(a)). Substantially lower magnitudes of the upper
volume asymptoté, Vu, and the actual volume change (Fig.8(b)) fesult in lower valueé for
the maximum local compliance (Table 1) compared to that of healthy adults (Fig.12).

3. The non-dimensional  — V curves combined with the magnitudes of the four parame-

19




ters of the model equation are shown to help understand quantitatively the effects of the
recruitment maneuver as well as differences among patients with ARDS (Figs.11, 13).
4. An important advantage of the continuous model equations is that various parameters
characterizing the shape and the range of p-V curves, such as the maximum local compli-
ance, the pressure at the maximum local compliance and the upper and the lower corner
pressures, may be evaluated readily from the model equation once the parameters of the
equation are determined from p-V curve data. The mathematically exact relations among
the parameters also implies that the magnitude of either pressure or volume at a certain
location aleng a p-V curve may only be interpreted correctly when compared to a char-

acteristic pressure or volume of the p-V curve, as demonstrated, for example, in Figs.11

and 13 when we discussed the docation of p = 20 emH,0 relative to the pressure at the

maximum local compliance.




Captions for Tables and Figures

Table 1. Pa.ra.metérs of Error Function Equation for Data Source A
Table 2. Parameters of Error Function Equation for Data Sourcg B

Fig. 1. Continuous p-V model equation.

Fig. 2. Non-dimensional p-V curve corresponding to Fig.1.

Fig. 3. Example of p-V curve from Data. Source A. filled circle = Data D,A
solid = error'functivo.n P-V equation, dotted = sigmoidal p-V equation.

Fig. 4. 'Examﬁle of p-V curve from Data Source B. Dotted cui've = piecewise continuous
equation, Eq.(6), Solid curve = error function equation, Eq.(2a), |
'Tri.angleb = upper and lower data limits.

Fig. 5. (V- V.)/AV ws (ym/4)A(p/po — 1) of Data Source A.

Unfilled circle = inflation, Filled circle = deflation. |

Fig. 6. (a) As (sigmoidal model ;:quation) vs A, (error function model equation),
(b) pos (sigmoidal equation) vs pg(error function equation).
for inflation data sets of Data Source A.

Fig. 7. (a.) pLip [cmH20] Vs pmei [emHR0] )

(filled (unfilled) circle = befére (after) recruitment maneuver).
| (b.) bp'UIp [ecmH30)] Vs pmed (e H,0] bf Data Source B.
(unfilled (filled) circle = before (after) recruitment maneuver).
'(pmm- and Pmed evaluafed from error-function equation.)

Fig. 8. (2.) A vs po, (b)[Vy = V(p=0)] vs [V(p = 20emH;0) = V(p=0)]
for inflation data sets from Data Source A and B. | '

Square = patients with ARDS, Cross = healthy adults before recruitment maneuver,
Tria.ngie = healthy adults after recruitment maneuver.
‘Fig. 9. po (before maneuver)/py (after maneuberj) vs‘ A' (before)/A (after)

Two numbers are Data Set No., followed by _his or her age in the bracket.
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unfilled circle = male, filled circle = female. o

Fig.10. p—-V curve and the corresponding 7-V ‘curve of error function model equation.
Data No.1 (top), No.6 and No.7 (bottom) of Data Source B (healthy adults).

Solid = Be-foré recruitment maneuver, Dotted = After recruitment maneuver.
Triangle = location of p = 20 [emH,0).

Fig.11. p — V curve and the corresponding -V émve of error function model equé.tion.v
Data No.11 (top), 13 and 15 (botton»:l)_ofADa.ﬁa Source B. |
Solid = Before recruitment maneuver, Dotted = After recruitment maneuver.
Triangle = location of p = 20 [cmH,0]. ‘

Fig.12. dV/dp(p = pq) (maximum local compliance) before reqrtliﬁment maneuver
vs dV/dp (p = po) after re¢ruitment maneuver of Data Source B.

Fig.13. (a) p—-V curvé and (b) the corresponding -V curve of error function model
equation for Data No.4, 13, 17 and 20 of Data Source A (patients with ARDS).

Tiangle = location of p =20 [emH0].




i Table 1. Inflation Parameters of Error Function Equation for Data Source A

Data No A Do AV Vi ~ (dV/dp) at po
L. 2.9652, 22.39, 23726,  -0.0709 0.0785
2. 27173, 21.98, 1.5612, -0.0762 0.0482 -
s 3383 25.08, 1.6193, -~ -0.0365 0.0541
4 16273, 13.32, 3.1567, -0.5727 0.0963
5. 27160,  30.36, 16216, -0.0768 0.0362
6. 2.6029, 23.88, 1.5066, -0.0962 0.0410
7. 1.7288, 20.15, 3.0089, -0.3645  0.0664
8. 1.8901, 14.95, 1.7905, © -0.2185 0.0565
9. 35379, 25.24, 2.7570, -0.0350 0.0965
10. 27081, 26.20, 3.7326, 0.1583  0.0996
11. 24206,  17.8, 1342, -0.0997 0.0455
2. 12500, 11.59, 1.2470, -0.2829 0.0336
13. 3.2725, 29.86, 3.9075,  -0.0861 0.1070
14, 27915, 1531, | 1.6284, -0.0705 0.0742
15. 1.9487, 1837, 18797, 02423 - 0.0498
16. 2.4566, 26.98, 1.3277, -0.0787  0.0302
17. 21027,  19.31, 1.3316, 01279 0.0362
18, 1.1672, 13.98, 2.0685, 05149 0.0431
19, 31381, 2680, 3.1306, -0.0851 ° 0.0916
20. 5.4709, 30.03, 1.7695, :0.0097 0.0805
21. 3.2818, 24.43, 2.8956, -0.2075 ©0.0072

po in [emH30], AV and Vi, in [L], dV/dp in [L/cmH,O).




Table 2. Parameters of Error Function EQuation for Data Source B -

Data No A g AV v Vi
1.F
B. 1.5136 25.00 5.1043 -0.8889 42154
A 2.0711, 14.48 2.7130 -0.2700  2.4430
2.F |
B. 2.5520 3170 5.4303 -0.2863 . 5.7166
A 1.7587 18.17 4.1416 -0.6590 3.4826
3.F . |
B. 2.0979 2176 3.7676 ©.0.3399 3.4277
A 2.2060  18.19 3.1331 -0.2300 2.9031
AM - | |
B. 2.1491 21.11 4.5443 -0.3726 41717
A 0.1887 1857 ©4.4023 -0.3554 4.0469
5.F | | '
B. 2.2192 24.60 . 6.4953 -0.4971 5.9082
A. 1.5729 13.46 5.2884 -0.8895 4.3989
6.M - ' -
B. 2.3950 23.21 4.2092 -0.2567 3.9525
A 2.4387 19.40 3.9049 - -0.2722 3.6327
M |
B.  2.6997 31.00 7.3180 0.2167 7.1013
A 2.3615 16.85 55288  -0.5641 . 4.9647
8F -
a 2.2901 30.80 8.2489 © 05185 . 7.7304
A. 1.9974 . 17.20 5.0638 -0.5478 4.5160
9F :
B. _—— —_—— _—— ——_—— —
A 2.0340 15.90 3.7392 -0.4068 3.3324
10.M -
B. 3.4081 28.80 ° 7.211- 20.0491  7.1627
A 2.3998 17.92 5.7276 - -0.5502 5.1774
11.M |
B. 3.1746 95.86 7.0726 -0.1361 6.9365
A 2.2828 19.70 6.79820 -0.8620 5.9362
12.F
B. 2.5060 93.20 5.0810 -0.2476 4.8334
A, 23844 16.36 4.3799 -0.3799 ~4.0000
13.F |
B. 2.3600 99.17 6.81755 -0.4353 6.3822
A 1.8107 14.00 4.03567 -0.6883 3.3472
14.M S
B. 2.2260 24.55 6.7170 0.4828 6.2342
FA. 2.0800 18.22 5.5875 -0.6761 4.9114
15. ‘ o
B.  3.5047 95.70 4.5022 -0.0027 4.4995
A 2.1561 1465 33016 -0.4836 2.8180

B = Before recruitment maneuver, A = After recruitment maneuver.

Po in [emH,0], AV, V, and Vy in [L].
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Chapter 2. A Mechanistic Model for Quasi-Static Pulmonary Pressure-Volume

Curves: Model Development for Inflation Process

Abstract

A mechanistic model of a total respiratory system is proposed to understand differences
in quasi-stafic pressure-volume (p — V') curves of the inflation process in terms of the alve-
* olar fecruitment_ and the elastic distension of fhe wall tissues. In the model, baseci on the
Boltzmann statistics, the total respira.fofy System consists of a lafge number of elements,
each ‘of which is a subsystem of a cylindrical chamber fitted with a piston attached to
a spring. The alveolar recruitment is simulated by allowing a distribution of the critical
pressure at which an element opens; while the wall distension is repres_énted by the piston
displacement. Va,nous parameters in the error-function p — V model equation are related
to the: propertles of the mechamstlc model. The parameters of the model-based p—V equa-
tion are determmed for each clinical data set for a total of twenty one p — V data sets of
patients with acute respiratory distress syndrome by a cdmputational minimization proce-

dure between the equation and the data points, results of which show excellent agreements

between the two.
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Nomenclature

(k/As)ho = po

piston surface area on which pressure is acting (Fig.4)
(k/As)¥T = po - Yro, threshold pressure fof onset of saturation
(B/2)V2 - py = FA/4

distribution functions (Egs.(6) & (13c))

functions defined in Eq.(13b)

. spring constant [N/m] (Fig.4)

total number of TRS elements
number of elements at energy level j
pressure (interpleural pressure difference)

non-dimensional pressure, p/py — 1

‘critical pressure at which an element, j, ‘pops open’.

Pej/po (Eq.(13c))

- pressure at the end of inflation process

pressure at the inflection point in p-V equation, Eq.(1)

total energy of TRS at p=p

=Ulp=pf) - Up=0)

volume |

volume change from the state of p = 0

lower (upper) volume asymptote (Flgl) |
non-dimensional volume, (V — (Vi + V1)/2)/(AV/2), (Eq.(2))

- volume of an element j

Vo =V = NVo(Fro +1)
‘pop-open’ volume (= Asfo) (Fig4)

piston displacement of an element j (Fig.4)
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o~

Yo

~

yr

Y1o

‘pop-open’ displacement, (= Vy/A4,) (Fig.4)
piston stroke limit (Fig.4)

U /%o

Greek symbols:

™) @™ R

o

w
‘Superscript:
Acronyms:
ARDS
TRS

constant of proportionality (Eq.(1a)) 4_
constant in the distribution function (Eq.(4))
= (42/k) B (Ea.(5)) |

energy stored in an element j (Eq.(3))

apo AV (non-dimensional parameter) (Eq.(1))

(8/m)*/2/A, Standard deviation (Eq.(13c))

Ap/2 (Eq.(2)) .

related to a single TRS element

acute respiratory distress Syndrome

- total respiratory system




Introduction

Quasi-static pulmonary p— V (pressure - volume) curves are used roﬁtinely to obtain -
quantitative information on the respiratory system that is important for both research and
clinical guidances, as the conditions of gas exchange, the primary role of the respiratory
system, are related to the characteristics of the curve. During the inflation (inépiration) and

_the deflation (exhalation) processes, the respiratbry system changes its volume (meas‘ur'ed _
in L (= 107®m3) or mL), lung (alveolar) pressure as well as the pleurai pressure (the
pressure of the thin liquid film that couples the lungs ‘and the chest wall pleurae). The
pressure, p, refers to the interpleural pressure difference (i.e. the difference between the lung
pressure and the pleural pressure) measured in water head [em- H30] (1emH,0 = 98 Pa).
Clinical p-V curves are commo‘nly obtained for an anesthetized human subject in supine
position by sequentially adding (or withdrawing) incremental gas volumes (~ 50-100 mL)
in a stepwise manner (with a dura.tion of ~ 5 seconds per step)[1,2]. Fxg lisa typlcal
inflation p-V curve, consisting of a nearly hnear region of hlgh comphance (1 e. large
dV/dp) sandwiched between two segments with low compliance at low and high pressure
regions. The shape of the p — V' curve is affected by two mechanisms, the distension of the
elastic resplratory wall tissue components and the recrmtment (pop—open mechanism) |
of the alveoli. The latter is the opemng of alveoli overcommg the surface tension at
the interface between the gas and the liquid film hmng the alveolar surface. A pressure
increase (i.e. an increase in the 1nterp1eural pressure difference) results in the recruitment
of a greater number of alveoli. The high compliance is believed to be associated with both
the distension of open pa.rts of the lungs and the (alveolar) recruitment of collapsed parts
of the lungs [3]. Some protective ventilation strategies, based on patients’ qua51-sta,t1c p-V
curves, have been proposed for lung d1sease patients in intensive care umts Amato and

coworkers (4,5] demonstrated, based on their clinical study involving patients with acute
respiratory distress syndrome (ARDS), that a ventilator strategy gujded by the p-V curve

resulted in reduced lung trauma, a high weaning rate and improved survival compared with
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a conventional ventilator strategy without the p-V curve guidance. Also, a recent ARDS
Network report [6] on a clinical study involving 861 patients shows lower mortality in the
group treated with lower tidal volume than in the group treated with traditional higher
tidal volumes. Although a use of p-V curves is not mentioned, the report underscores the

importance of optimized ventilator strategy.

_ In order to quantify thé characteristics of p—V curves as well .as their changes observed
in clinical settings, various p—V model equations have been proposed [7-12]. Parameters in |
model equations are determined from statistical processing of clinical data. Itis importanf
that these parameters should have some physiological interpretations. Also, to understand
the shape of p-V curves in terms of mechanical behavior of lungs, multi-compartment lung
models were developed and used to obtain infdrmation on the effects of lung elasticity and
a degree of alveolar recruitment on p-V curves [3,13]. Although these analyses serve to
relate the internal elastic conditions of the total reépiratory system (TRS) to general p-V .
curve behavior,: there has beén né,attempt to interpret individual differences in p-V curves
directly in terms of internal elastic properties, alveolar recruitment and their changes.
From an analytical viewpoint the quasi-static p-V curves are more amenable to theoretical
studies because at each state we may be .able to apply equilibrium principles. An overall

objective of this report is to test the hypothesis that a mechanistic model, based on the

continuous alveolar recruitment and the elastic distension of the wall tissues, is effective in -

understanding a relation between the observed pulmonary behavior (as p-V curves) and
the corresponding internal respiratory response (in terms of the mechanistic model).

Continuous Equation for Quasi-Static pP-V Curves

In the past piecewise-continuous equations were used to generate such quantities as
compliance, the lower and upper inflection points that may reflect the internal conditions
of TRS [7-12]. There are two continuous model equations that siniula.te various p-V curves
accurately over the entiré range of p-V data. One is. a sigmoidal (tangenﬁ hyperbolic)

equation, and the other an error-function equation, both originally proposed by Venegas
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and his coworkers [1]. Since the analytical development to follow utilizes the error function
representation of p-V curves, its characteristics are discussed below in some detail.

The error function p-V equation, plotted in Fig.1, may be expressed as

%:%.sz.ezp[_(@y(gg_l)j, - (10
V=‘VU—'%+(%‘i)-erf<4'l\.(1%—.l)>, | (1)

.Where AV = Wy = Vi, Vu = the upper asymptote, V; = the lower asymptote, o =
positive constant, py = a pressure at the midpoint (inflection point) of the curve and A

(non-dimensional) = apg AV (1,2,14] with

s 2 z 2 ‘ - o
erf(x =—/ e~ dt erf(oo) =1, erf(—z)=—erf(z).
@=—=| (c0) (~2) = - eri(a)
The corresponding non-dimensional forms are,
daV. A ™ o ™ |
?p-=§--eg;p(—zw2), | V.=e'rf(2—‘/—w). (2)

where V = [V — (Vy +V1)/2]/(AV/2), P = (p/po) -1, w=AP/2
Eq.(2) satisfies the following'conditions: | -

V(@=0) =0, V(p) = =V (—p) (antisymmetry with respect to p = po),

dV/dp(F=0)=A/2, V(F—+occ)=+1, dV (5> +o0)/dp =0.

A clinical data source of p-V curves we use in the presént analyses are twenty one da,ta,
sets of ARDS patients (both inflation and deﬂaﬁion data) in supine position by Harris et
al [2], made available'by the authors. Data sets are analyzed by minimizing the difference
between data points and the error function model equation through the application of the
method of least squarés to obtain the parameters, A, AV,py and Vi (or V). Plotted in
Fig.2 (Fig.3) are 264 inflation data points (225 deflation data points) in vterms of Eq.(1b),
(V =V1)/AV vs /TA(p/po — 1)/4. Agréement is excellent betwéen the data and the p-V

equation with R? (the coefficient of determination) = 0.99938 for the inflation- and =

0.99907 for the deflation- data points.




Development of a Mechanistic Model

An overall objective of the development of a mechanistic TRS model is to derive an
equation for the volume participating in thé p-V variations. We consider a TRS comprised
of a very large number of elements with N = total number of elements. Based on the char-
acteristics of a single element that are common to all elements, a distributioﬁ of elements
is derived over a distribution parameter. The mechanistic model of an element is shown
" in Fig.4. An arbitrary element, j, consists of a cylindrical chamber-cqntaining a piston
(with its surfaCe‘v area, As, [m?]), which is attached to a spring with its spring constant,
k [N/m]. The element is closed when the piston is located at the left end of the cylinder in
Fig.4. When pressure acting on the left end of the piston reaches a certain critical value, |
the piston suddenly mox}es to anew position (‘pop-open’ mechanism) with the elemental -
volume, 170, in the figure indicating an elemental volume increase due to the sudden piston
displacement of 7jp. Once the element is open with its volume of 170, any further increase in
pressui‘e' results in avvolume increase as the piston moves to the right uﬁtil it reaches the
end of the cylinder. (The symboi,", indicates an elemental quantity.) In the model the.
pop-open volume, Vj (= As%o), and a further volume increase due to piston displacement
- represent the opening of alveoli and the elastic distension of the wa.il tissues respectively.

We define p ; as the critical pressure at which the element, j, ‘pops open’.

Referring to Fig.4, the elemental volume, 177-, atp(> pcj) is equal to ¥, +As§]jv; which,
upon application of a quasi-static force balance across the piston, A, (p—pc;) = k7, may
be expressed as, V; = Vo + (A2/k) (p—pe;)- Also the piston position of an element reaches
its stroke limit of 7 when pressure, p, reaches (p. j+(k/As)Jr). The mechanistic model of
an element, therefore, goes thfough three stages in the inflation process — closed, open &
unsaturated (i.e. §; < ¥r) and open & saturated (i.e. §; = §r). The model assumes that
the critical ‘pop-open’ pressure, p.;, as well as the location of the piston for open elements,
7j, vary from element to element at an arbitfary quasi—st.at’:ic state (p, V), and that other

quantities such as k, Ag, Vo and 7 are constant and common for all elements. The energy
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level of an open and unsaturated elemenﬁ, j, consists of the activation energy required to
pop open the element, €; 4, and the energy stored in the spring, €; . For € A, We assign
the compression/expansion work under constant pressure; i.e. €A =Dc j%; while, € g is
equal to k77/2, which may be expressed in terms of pcj. as €5 = (A2/2k)(p — Pej)? from-
an application of the force balance. |

In summary, at a quasi-static (-equilibrium) state at p = p, a TRS element, j, belongs to

one of the following states:

~

if p<pej, the element, j, is closed with V; =0, & =0.
if pc;=p, the element, j, pops open with 17] = \7{),' €= pcj%.
if p—(k/As)yr <pcj < p, the piston of the open and unsaturated element, i |
moves to a location, 7, with 17J =V + 4, Ui, € = p.;ij + (A2/2k)(p — pe)%
if pej <p—-(k/As)YT, the piston of the open and saturated element, j,
remains at the stroke limit, 7z, with ‘7j,= Vo + A, ur, €= pcho + (k/2)g.
The state of a.ﬁ element follows the sequence above during the inflation process as p in-
creases. To obtain an explicit form of the distribution function of TRS elements over the

distribution parameter, p.;, we focus on open and unsaturated elements, for which the

eleme_nta.l energy shown above may be rewritten as,

. 42 N NETR Y
€; (open, unsaturated) = 5]-;’— [pcj - (p- 7(22)] -22<2 - 170) (3)
: S 8

According to the Boltzmann statistical model ([15,16] for example), which assumes that
there is no limit in the number of elements per energy state, the most probable distribution

N;/N (a fraction of elements at an energy level, €;), may be expressed as
N;j/N = e'ﬁ?"/ Ze‘ﬂ?j (B = unspecified constant) (4)
j .

A substitution of Eq.(3) into Eq.(4) with the summation replaced by an integral over the

whole range- of p.; for a large number of elements, yields

dN; B k ~\2 0 B E ~\2
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where § = (A2/k) B. It should be noted that the integration in the denominator ranges
from —co and +oco. As summarized above, any arbitrary element remains active (open
and unsaturated) only in a certain range of p, j; therefore, the application of Eq.(5) over
the entire range of — 00 < p,; < co assumes that the distribution function that is valid for
active elements is also applicable in evaluating the number of closed as well as saturated
elements. Then, upon performing the integration of the denominator in Eq.(5), we obtain
for dN;/N(= a number fraction of elements, for which the magnitude of p, ; rané;es bétween

Dcj and Dej + dpcj)y

~\ % -~
T f= (f;) ean(~5 (o-pey - T?)  (6)
Noting that elements, j, with p.; in the range of 0 < p, j £ p, are open at p = p, and
that (k/As) i (= B) is the pressure at which an element Jj with pc; = 0 reaches the piston
stroke limit of 7, the vc)lume change with pressure needs to be evaluated for the following
two pressure rahges; pressure range. 1:. 0<Lp<B .and pressure range 2: B < p. |
Pressure Range 1: 0<p <B | |
Since the pressure is below B (the threshold pressure for the onset of saturation), all
open elements are active (unsaturated) with 7; < #ir. Then the total volume, Vo(=V(p=
p)~V(p=0);ie. avolume change from the state of p=0), partibipat'ing in the inflation

process is,

L d

flp=0p) dpc,}.

o

cj =P

P ~
Vp(p) =N [/ O(VO‘F‘Asgj) f(p=p) dpcj + Asgj /
’ Pecj= P

The first term on the right hand side represents a volume increase due to the elements that
pop-open, followed by a piston displacement (7; = A2(p — pc;)/k from the force balance)

during the inflation process from p = 0 to p = p; while, the second term, noting

/:, f(p=p)dpcj=/°° f(p = 0) dpe,

cj=P Pc ;=0

accounts for the elements that are already open at p =0 and the piston displacement

¥j (= A2p/k) is the only mechanism available for the volume increase.
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After expressing J; in terms of p and p, ; as shown above, the equation may be written as,

v . :
Y, =N <2%> U: * oty 4 éit) exp(— —-tz) dt+/ e -ﬂ-zz) (7)
where A = (k/As)To, t=—2z= (p~pcj—kVp/A2).
Pressure Range 2: B <p |
In this pressure range, the elements with 0 < Pcj <p—B as well as the elements that
are already open at p =0 are saturated (i.e. §j = Ur for the elements); while, the elements

with p — B < p.; < p remain unsaturated (i.e. Uj < yr); therefore,
‘ ~B _ o | P
Ve =N/o (Vo + Asfir) - f(p = p) dp, +N/ . (Vo + As7;) - f(p = p) dp.
- N ‘p |
+ 8 [ Agr io=p)dpe; )
P

Eqs.(7)(8), after integration, become,

%0<p<B)=NT[n+i2a-1)- N@g + 1) (90)
Vo( B<p )=N17o[h+yT°(1—I )+ 2L > miy 2;C+§T°2+1fs(p)] (9)
where

hi=erf(O), hip) = esp(~C*(5 1)) - exp(-CY), (o) = erf(C (2 - 1)),

Li=erf(CU~§7), Is = exp(~C*(Fro - 1)?) = exp(~ C?),

~ \1/2 R
=(ﬁ/2) ‘A, Yro=7yr/%o = B/A.

Therefore, the mechanistic model yields the following p-V equation;

V(OSPSB) = Wy

s (1-NL),p . YJro+1 Tro—1 Is — I)(p)
+NV0( 5 (Z—yTO)— 7 T T3 I4+—W'*‘IB(P)>7 (10a)
| NV (Gro+1)  NVy(Gro +1 o
V(B<p ) =vy- 20U D  Nhrtl) o, oy
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In order to relate the present TRS model, intended to describe the internal respira-
tory conditions, to the p-V curve that quantitatively describes overall variations in TRS
conditions, an‘additional condition that needs to be satisfied is conservation of energy. For
a quasi-static process from an initial state of (p = 0,V = Vip = 0)) té a final state of
(p=p5,V =V(p=0py) (ps = the pressure at the end of a measured p-V curve), the _'
conservation of energy neglecting any dissipative méchanisms may be written as,

| V(p=ps) :
U=Up=p) - Up=0) = [ " pav, .
V(p=0)
where U ( ) represents the total energy of TRS at p =D to be evaluated from our mecha-
nistic model while the right hand side of the equation is work a38001ated with the inflation
process that must be evaluated from the p-V model equation. A further development of
the energy equation will be discussed in the next section.
_Mechanistic Model vs Error Function p-V Equation

Relations Between the parameters in the error function p — V' equation and the pa- '_
rameters in our mechamstm model are derived based on the observation that the p V
relatlon Eq.(10b), for the high pressure region as well as the correspondmg equation for

the local compliance,

NVo(Fro+1) . NV(fro + 1)

7 (B =V — . P _
V(B<p) = Vy 7t g e (e - ),
dv _ NW(Fro+1) 20 2P 2}

become identical to the error function model equation, Eq.(1),

2 2 4 Do
% =2 sl (E (2 )]

if we set

No(Gro+1) = AV, A(=(k/4)%) =po, C

i}
—
) e
~—

<
[ V]
~_

il
~[5

o2

—
X/
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Before further developments are made on the mechanistic model, our results are summa-
rized below, based on the parametric relations, Eq.(12), between ‘the error function p-V -
equation and the model.

Pressure - Volume (p — V,) Equation:

Vo (0 < p < po - Jro)

(p+1><1—1> L) .
( | ! — + I3(p ))

Ve (Po - o <P)

+
—"f—l—I)+yT0 1
2 5 ¢

215 {U\TD’*"‘l -
— + 5 | -Ig(p)). (13a)

Pressure - Volume (p — V') Equation:

. Vo +V,
- V(0<p<po-Pro) = U2 2
AV oL A=I) o Gro—=1 . 2(Is — I(p))
, +§T0+1(I3(p)+—2_-(p+1 ¥ro) 2 fa+ A ’
R Vw+Ve AV |
V(o -0 < p) = U,2 Ly 5 I3(p) (13b)

where Iy =erf(C),  L(P)=exp(—C?*7*) — exp(—C?),
Is(p) = erf(CP),  Ii=erf(C(1-7rs)),

Is = eap(—C? (firo — 1)%) — exp(~ C2),  C =+/mA/d.

Distribut_ion Function:

anN; 1 1 Pej ~
N'dﬁcj —F(p)) F(p) - \/5;0' exp( 2[

1% (13¢)
where . Dcj = pecj/Po, o= (8/1)%/1&.

The model-based p-V equation, Eq.(13b), consists of two regions. The solutiqn for the

high pressuré‘region is identified with the error-function p-V equation. The p-V equation

for the lower pressure region as well as the boundary pressure between the high- and

low-pressure region contain the parameters of the p-V equation, A, po, AV, Vy (orV1)),
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and an additional parameter, 7. Conser\}ation of energy, Eq.(11), is utilized to find the
magnitude of ro. Similar to the p-V model equation, Eq.(13b), the evaluation of Eq.(11)
depends on thé magnitude of the final pressure, py, relative to the boundary pressure,
Po Yo, between the high and the low pressure regions of the model-based p-V equation.
As will be shown later in the analyses of clinical data, the magnitude of 7jrq is less than |
unity; hence, the conservation of energy is further developed for the case of py-rg < p 7 (Le.
Yro — 1 < Pp(=ps/po — 1)). Accordingly the left hand side of Eq.(11) may be evaluated
from the elemental distribution function, F(p) of Eq.(13c), along with the elemental energy

summarized in the paragraphs preceding Eq.(3), yielding,

Np? A2

Ps+l-yro . 1A2 o
AU = T—i /(; (pcj + §yT0) 'F(ﬁ=ﬁf) dpcj

Ds+l _ 1 JR R
# [ Gt i@+ 1)) Fo =7, dy
Ppt+l-yro :

Np A2 Pr+l- y'ro _ L R
i T [/ (pCJ pf)F(pz-pf) dpcj
O .

:,7%0 5f+-1—yTO N ﬁf'l"l . ) R
+"2“"/ F(®=7;)dp.; +T9f/ F(®=p;)dp.;
o 0

+§/ _ F(ﬁ=pf)dpcj+§/ ~ (Pej =Pf)" F(p =) dpe;
P P '

Py+l-yro Ps+l-yro

2
Npk A { ;K[Is - L(5,)] + %§%0[13(ﬁf) + 4] + %ﬁf[h +I3(py)]
+ %(Il - Iy) + ;2&(%(11 - L)+ %(1 — L)
— %[(ezp(—cz) — (1 - @\TO) . ezp(—02(1 - gTO)z)])} . (14&)

4The right hand side of Eq.(11) becomes,

V(p=py) PoyTo Pr R
/ pdV =psV(p=1ps) - [/ V(0 < p < po¥ro)dp + / V{poJro < pf)dp]
V(p=0) o . PoYyTo
PoAV (yTo +1),_ Yro(Uro — 1) 2
= 1) - I LA 24 R VAN Y SIS
o + 1 (f+) (P ) 5 4= Yo Is
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: ‘?To—l 4 9 N .
- / 15(5) dp + —s (I — L) — —ro - exp(~C?)

-1 - mwA TA
Jro+1 [Pr 72 |
S [T @+ T -n|. (145)
yro—1 ' '

‘It should be noted that the factors, NV p2 A2/ k, in Eq.(14a) and poAV/(Fro +1), in
- Eq.(14Db) are identical; thus dropping out of the conservation of energy, Eq.(11), as common

. factor.

The p-V equation constructed from the meqhanistic model, Eq.(13b), -contains five
unknowns (A, po, AV, Vy (or V1), ¥r0), the magnitudes of which are determined by min-
imizing the differences between Eq.(13b) and a specified data set based on the method
of least squares, under the constraint imposed by the conservation of ‘energy, Eq.(11) ax.ldA
Eq.(14). Because the p-V équétion consists of two equations, one for the high pressure

region and the other for the low pressure region, and also because algebraic equations re-

sulting from the application of the method of least squares are non-linear, a computational

| progra’m is developed to find the five unknowns. The program requires a set of initial guess

values for the five unknowns. The parameters, A, pg, AV, Vi, of the error function p-v
equation, Eq.(1b), are used for initial values with the initial value for the fifth unknown,
Yro, being set to zero. The program employs the'Newton-Raphson iterative technique
around the value of pq fo minimize the errors between Eq.(13b) and the data points

while conservation of energy is satisfied exactly, until the five unknowns converge to a set

of solutions.
Discussion of Results

We begin with physical interpretations of parameters of p-V equations in terms of the

‘mechanistic model. The first equation in Eq.(12) is,

AV = NVy(fro +1)

=N (% + As gT)
Noting that 7o is a ratio of the piston displacement by elastic tissue distension to that

by alveolar recruitment, AV of the error function p-V equation is the maximum possible
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volume available for inflation, and is related to the mechanistic i:'riodel as a product of the
~ total number of elements, N, and the elemental volume avallable for inflation through beth
the ‘pop-open’ mechanism, Vb (corresponding to the volume increase due to the alveolar
opening), and the piston displacement, Ayt (corresponding to the elastic wall distension of
TRS). Wy is related only to the solution of the high pressure region as Vy = V (p — o0).
On the other hand, under the two-region p-V equation of the mechanistic model, the
definition of AV needs to be elaborated. Since V; # V (p— - oo) in the lower(_pressuré
solution of the mechanistic model, AV should be interpreted as the maximum possible

volume change when the high pressure solution is extended into the low pressure region.

The second equation, py = (k/A,) 7o, indicates that the pressure at the midpoint of the
p-V curve is an equivalent pressure required to displace the piston agamst the spring force
over the pop-open displacement of 7 Yo. It may be rewritten as poVo = k¢ therefore pOVO /2
is the spring energy required to displace the piston by the amount, 75. T hlS observation
implies that the pressure, py, is rélated to both the alveolar recruitment (through ) and
the elastic tissue distension (thro@h k). A higher magnitude of Po implies a larger value
of the spring constant 9wall elasticity) and/or a greater amount of energy required to _

- pop-open the elements.

The non-dimensional parameter, A, is related to the parameter, C, of the mechanisti¢
model through the third equation in Eq.(12), C = (/7/4) A. As ma.y be seen from Eq.(9),
the parameter, C, appears as a factor in the function, I3(p). Since the function, I3(p), is a
monotonically increasing function of P, an increase in volume, V, becomes more sensitive
to a change in pressure when the magnitude of A is larger. The observations above rhay
be further extended in terms of the distribution of elements over the critical pop-open
pressure, Eq.(13¢c). The number distribution of elements is a normal distribution with its
mean at B (= p/py — 1) and a standard deviation, o, which is proportional to 1/A. Since
the peak of the distribution is loceted at p.; = P, the rate of increase in the number of

open elements increases (decreases) for p < Po (P > po); an observation consistent with
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the fact that pg is a pressure at the inflection point of the error function p-V equation.
A larger value of A indicates a smaller standard deviation, indicating a higher peak in

number density and a sharper distribution.

The p-V equation, Eq.(13b), of the mechanistic model consists of the low pressure
solution in which all open elements are unsaturated, and the high pressure solution where
some eleménts are satura.ﬁed (fully-distended). The equation has three pressure -dependent
terms. A term proportional to P in the equation for the low pressure region (the third
term) is due to the elastic distension of the elements that are open at p=0. Two other
pressure-dependent functions are I5(%), originating from volume changes due' to the piston
displacement, and I3(5), which results from both the pop-open volume and the piston
displacement. The former is symmetric with respect to (= p/po — lv), =0, i.e. () =
I(—7P); while, the latter is antisymmetric, i.e. I3((P) = — Is(—P). Furthermore, the p-V
equation in the high pressure region, V (pg - 77 < D), is independent of the magnitude of
Yto; while, the solution V}, is sensitive to the magnitude of rg in both the low and the
high preésuf.e regions.

Fig.5 shows six representative data sets of patients with ARDS as well as the cor-
responding p-V equation, Eq.(13b), derived from the mechanistic model for the inflation
(I) process. Fig.6 is a plot of [the volurﬁe predicted by model-based p-V equation at a
specified pressure] 'vs [the corresponding data volume] for all inflation data, points from
the twenty one data sets. Both figures show very good agreements between the model and
the clinical data with R? for Fig. 6 being equal to 0.9993. (Various parameters for all
data sets are summarized in Table 1.) The solid (dotted) curves in Fig.5 are fhé solution
of the low (high) pressure region (i.e. the first (second) equation in Eq.(13b)) with the
compbsite solution indicating that the p-V curve is not antisymmetric with respect to po.
- However, since the error minimization is applied between the antisymmetric error function
p-V equa,tion,. Eq.(1b), and the mechanistic model equation, Eq.(13b), the two curves are

very close to each other in the low pressure region of 0 < p < poTro. Ranges of various
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parameters listed in Table 1 are,
A =15-55 po = 13-31[cmH,0],
AV =1-4 [L], 7o = 0.289 — 0.695.

Since the boundary pressure between the low- and the high- pressure solution, pg - Jro, is
low compared to the end-of inflation pressure for most data sets, the antisymmetric high
pressure solution is applicable _ov‘er‘ a major part of the data sets analyzed. It is also noted
here that if the condition of §ry = 0 (negligible elastic tissue distension) is imposed, the
solution of the mechanistic model, consisting solely of the solution for the high pressure
region becomes identical to the (antisymmetric) error function p-V equation although the
conservatlon of energy is not satisfied by the condition. Fig.7 is presented to show the
magmtude of the left hand side of conservation of energy divided by PoAV as the absmssa
and (—1)- (the right hand side of conservation of energy divided by PoAV) as the ordinate |
for all data sets when Yo is set to zero and the parameters (A, py, AV, VL) of the error
function p-V equation are used for the evaluation. The figure shows thatl the left and ri.ght
hand side of conservation of energy have opposite signs for all data sets, indicating that
conservation of energy is not satisfied at g = 0.
The range of ¢ obtained by.the mechanistic niodel indicates that the fraction of total
volumé available for the pop-open mechanism (alveolar récruitment)', NV, J/AV, which is
equal to 1/(1 + §7g), ranges between 0.59 and 0.78.
Summary

A mechanistic model of TRS elements, each consisting of a piston-spring system, is
developed to analyze quasi-static pressure-volume curves for the inflation process. The
model accommodates both the alveolar recruitment (in terms of the critical pop-open
pressure) and the elastic distension of wall tissues (in terms of the piston displacement).
Model-based relations (Eq.(12)) are established between the parameters in the p—V curve
represented by the error function equation, Eq.(1), and in the mechanistic model. Under

the constraint imposed by conservation of energy, the parameters of the model-based p-V
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equation is determined for each clinical data set by a computational minimization proce--
dure between the equation and the data points, results of which show excellen't agreements
between the two (Figs.5 and 6). The p-V equation thus derived, Eq.'(13b), consists of two
equations-; one for the low pressure region where all open elements are active (= unsatu-
rated) as the piston of an element is yet to reach its stroke limit, and the other for the high

pressure region where some open elements are saturated. The elemental distribution over

‘the critical pop-open pressure, Eq.(13c), is a normal distribution with its shape (the mean

and the standard deviation) affected substantially by the magnitudes of ﬁwo parameters
in the mechanistic model, A and py.

The present analysis is for the inﬂa,tion process. The deflation process is diﬁ‘erevnt
from the preceding inflation because of the absence of the pop-open mechanism, and also
becasue of a possibility of airway closure. However, a certain aspect of the deflation process
may be predicted from the inﬂé,tion analysis; which will be discussed in Prat IT as a va.lidity
test of the mechanistic model. Wide ranges covered by the parameters, A, py, AV and
Y10, of the p—V equation and the mechanistic model need to be interpreted in terms of the
shape and the range of the p-V curves as well as in terms of the elemental distribution and

its changes along the corresponding p-V curve; which will also be discussed in Part II.




Figure/Table Captions

Table 1. Sunmia.ry of Inflation Data Analyses.
Fig.1. A typical quasi-static pulmonary pressure-volume curve.

Fig.2. Error-function p-V equation and inflation data points.

Fig.3. Error-function p-V equation and deflation data points.

Fig.4. A schematic Adiagra.m of mec.ha,nisti'c'modelvof TRS element.
Fig.5. Model-based p-V equation, Eq..(‘13b),.vs data points for inflation process. - -

solid: solution for low pressure region,

dotted: solution for high pressure region.

Fig.6. V (voiuine prédict‘ed by ‘model-based p-V equation) vs V (volumé of data)

i

for a specified pressure.

Fig.7. AU/py - AV vs (=1)- [pdV/po - AV when §ro =0




Table 1. Summary of Inflation Data Analysis.

- Data No A

Do AV Vi, UTo
[emH,0)] L] [L]
d. 2.9652 22.398 2.3726 -0.0709
2. 2.9578 22.411 . 2.3772 -0.0723 . 0.347
B.1. 2.7173 - 21.981 - .1.5612 -0.0762 :
2. 2.7304 21.999 1.5559 - -0.0728 ¢ 0.359
C.1. 3.3532 25.082 - 1.6193 -0.0365 '
2. 3.3664 25.073 - 1.6139 -0.0342 0.329
D.1. 1.6273 13.324 3.1567 -0.5727
2. 1.9257 13.999 2.8392 -0.3542 0.379
E.1. 2.7160 30.361 - 1.6216 -0.0768
2. 2.64907 30.817 1.6847 -0.0923 0.480
F.1. 2.6029 23.880 1.5066 -0.0962
2. 2.6423 23.863 - 1.4874 - -0.0873 0.365
G.1. 1.7288 20.156 3.0989 . -0.3645
2. 1.9277 20.731 2.8704 - -0.2138 0.447
H.1. 1.8901 14.959 1.7905 -0.2185
2. 2.0421 15.405 1.7129 . -0.1563 0.431
I 1. 3.5379 25.248 - 2.7570 -0.0350 :
2. 3.5449 . 25.232 2.7508 -0.0333 0.368
J. 1. 2.7981 26.208 3.7326 -0.1583
2. 2.7364 26.830 3.9129 -0.1887 . 0.474
K1 2.4296 17.895 1.3424 -0.0997
2. -2.4708 17.951 1.3304 -0.0916 0.440
L.1. 1.2500 11.592 - 1.2470 -0.2829
2. - 1.5318 13.213 1.1256 -0.1678 "~ 0.695
- M. 3.2725 29.865 3.9075 -0.0861
2.. 2.9972 30.327 4.2463 -0.2179 0.626
N.1. 2.7915 15.310 1.6284 -0.0705
-2, 2.8046 15.297 1.6219 -0.0681 0.358
0O.1. 1.9487 - 18.374 - 1.8797 - -0.2423 '
2. 2.1412 18.837 - 1.7753 -0.1696 0.389
P.1. 2.4566 26.982 1.3277 -0.0787
2. 2.4553 27.032 - - 1.3278 -0.0773 0.467
Q.1. 2.1027 19.314 1.3316 =0.1279 )
2. 2.2041 19.583 - 1.2941 - -0.1004 0.389
R.1. 1.1672 13.986 - 2.0685 -0.5149
2. 1.6209 16.352 1.7396 -0.2530 0.406
S.1. 3.1381 - 26.802 3.1306 -0.0851
2. 3.0894 26.925 3.1878 -0.1030 . 0.407
T.1. 5.4709 30.038 1.7695  -0.0097
2. 5.4708 30.037 1.7694 -0.0097 0.289
U.1. 3.2818 24.439 2.8956 -0.2075
2. 3.2819 24.349 2.8956 -0.2075 0.327

1. Obtained by applying the method of'least squares
along with error function p-V equation.
2. Results from the mechanistic model.
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Fig.4. A Schematic diagram of mechanistic model of TRS element
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Chapter 3. A Meéhanistic Model for Quasi-Static Pulmonary Pressure-Volume

Curves: Examination of Clinical Datz_a

Abstract

A p-V equation is developed in Part I based on a mechanistic model of a totai respiratory
system. In Part II, twenty one p — V' data sets of patiehts with acute respiratory distress
syndrome are examined using the mechanistic model, relating the quasi-statié pulmona.ryl
p-V curve to the corresponding respiratory conditions in terms of a volume increase due
to alveolar recruitment and due to elastic tissue distension; the elemental distribution

ranging from the closed elements to the saturated (open and fully-distended) elements

 and its changes with pressure. The compliance (local gradient) of p-V curves is shown

to represent the change in the total volume of saturated elements; while the pressure at -
the maximum ;:ompliance is idéntiﬁed as the location where a mé}dmum rate of increase
occurs both in the voiume increase due to alveolar recruitment and in the volume increase
due to an increase invthe saturated elements. Validity of the model is prévided by its

predictions of the upper volume asymptote and the maximum possible volume change of

the corresponding deflation process which agree well with the clinical data.




3

Pcj

Pcj

Dy

Po

PID

v
Vpop—open
Vsat
Vopeﬁ—sat (p = 0.)
Ve

Viw)

Vi

Nomenclature

piston surface area on which pressure is acting
(k/As)Jr = po - Tro

= /mA/4 |
distribution functions (Eq.(3)).
functions defined in Eq.(2)

1

si)ring constant [N/m]

total number of TRS elements

total number of open elements

total number of saturated elements
total number ”of unsaturated elements |
number of elements aﬁ: energy level j

pressure (interpleural pressure difference)

non-dimensional pressure, p/py — 1

critical pressure at which an element, j, ‘pbps opern’.

ch/Po

pressﬁre at the end of inflation

pressﬁre at the inflection poinf in model equation

pressure at the intersect of inflation and deflation processes
volume -

total ‘pop-open volume’

- total volume of saturated elements

total volume of elements open at p = 0 when they are all saturated.
volume change from the state of p = 0
lower (upper) bound of volume

an (imaginary) upper bound of volume for the deflation process
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14 non-dimensional volume, V(V ~((Vu +V5)/2)/(AV/2), (Eq.(1b))

v, - volume of an elenie_nt j
. AV Vo =V = NVo(Fro + 1)
Vo ‘pop-open’ volume (= A;Yp)
Uj piston displacement of an element j
- Yo C = /A,
yr _ piston stfoke limit
Yro Gr/T0

Greek symbols:
constant of proportionality

A - apoAV(non-dimensional parameter) (Eq.(1b))

o (8/m)/2/A, Standard deviation (Eq.(3b))
0D ~ 7°Po |
Superscript: '

———

- related to a single TRS element

d . | deflation process
Acronym:
ARDS . ' acute respiratory distress syndrome

TRS - total respiratory system -




Introduction

In Part I, the error function p-V model equa.tibn is shown to agree well with clinical
p-V data. The equation and the corresponding non-dimensional form are,

V=VU—~%K+ (%‘f) -erf(C’(f;—l)), V=erf(c'5). (1, b)

where AV = V; — Vi, Vi = upper volume asymptote, V;, = lower volume asympfote,
Po = a pressure at the inflection point of the curve, C =y/mA/4,
V = [V~ Vu+V)/2/(AV/2), P = (p/po) - 1.

The mechanistic model of a TRS element developed in Part I is a piston-spring-
cylinder system with the alveolar recruitment and the elastic tissue distension representéd
respectively by the critical pop-open pressure, p.;, and byv the displacement of piston
against the spring force, 7; = A2(p—p.;)/k (A, = piston surface area, k = spring-constant).

Based on the error function p-V equation and the mechanistic model, and allowing
for a distribution of elements over p, j» the folloWing model-based p-V equations as well as -

the corresponding distribution function of TRS elements are derived,

V(OSPSPO'.{HO) = ‘KU“;:_‘@'

20 1(13(;-)) + 8o g1y - T, o 2 f‘ﬁ”), (20)
V(o grosp) = 23V LAY 1, | (2
Nc.l];f;cj = f(@), flp) = ‘/2—;013 -emp(-—%[pcj _g(,f—pl))r)’ . (3a)
W = PO, F0) = o~ H(BL2EP) )

where

Li=erf(C), I(P) = exp(~C?F?) - exp(~C?), Ia(p) = erf(CP),

Iy =erf(C(1-9ro)), Is= eip(—02 (Jro — 1)?) — exp(— C'2),
op = (8/mipo/A,  o=(8/mH/A  Bej=pe;/mo.
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Following the development of the mechanistic TRS model and the discussion on relations

between the error function p-V equation and the the model-based P-V equation as well as

- between parameters of the two equations in Part I, our discussions here concentrate on

various results that may be derived from applications of the model to the clinical p-V data
sets. |
Relationship between Inflation and Deflation Processes

Although this A_re'port}is focused on the mechanistic model for the inflation process,
there evxist'certain relations between the inflation and the deﬂatioﬁ process that;. may be
evaluated from the presént inflation analyses. We consider a general case in which a -
quasi-static inflation process proceeds to a pressure, prp (= end-of-inflation preésuré:
initial pressure of the corresponding deflation process), followed by a quasi-static deflation

process. In terms of the mechanistic model, TRS elements at P = prp with its critical

‘pop-open pressure less than zero (pej < 0) are still closed and have not contributed to

the volume éhénge during the inflation process from p = 0 to p = p;p; hence, we may
postulate that only those elements that are open at p = prp participate in the deflation
process to follow. Therefore, V¢ (=an (imaginary) upper bound of volume for the deflation
p-V curve) may be viewéd as the volume which would be aﬂ:ained if the elements that are

open at the end of the inﬂation.process, D = prp, were all fully saturated; i.e. -

oo A
V[}i =V(p=p/p)+ [/ NW(1+7ro) - F(p =Pp) dpej — Vo(P=D;p)
0

" The first term on the right hand side is the inflation volume at p = p;p. The second integral

term is the volume summed over all open elements at p = DID when they a,re'saLturat.ed,
and the last term is the actual volume increase in the inflation procesé from p = 0 to
p = prp with the two terms in the square bracket together representing a volume increase
above V(p = prp) if all open elements at p;p were saturated. Under the assuraption
that the magnitude of PIp is greater than B (= po J1o) which is valid for all data sets
analyzed, Eqs.(2,3) along with Eq.(9) of Part I for Vp are used to evaluate the right hand
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side, yielding

' 2AV AV ‘
d _ . —— D
VU = VL+—7TA(1—-——_+§T0) I5+ 5 [1+I3(p1D)]
NG » - ‘
+ o [1= (2= Fro) - 1 + (1 = Fro) - I 4
2(1+yT0)[ (2= %r0) - I + (1 — Pro) - Iy (4)

The clinical data sets made avallable to us contam both the 1nﬂat10n and the deflation p-V
curves for each patient with ARDS however, the p-V curves are obtamed separately for the
inflation and the deflation process. (See [1] for the procedure of data acquisition.) Fig.1
“shows inflation (unfilled) and deflation (filled) data points, as well as the corresponding
inflation (I) and deflation (D) curves for a typical data set we examined. The inflation
curve in Fig.1 is Eq.(2) of the mechanistic model; while, the deflation curve is obtained
by straight applications of the ethod of least squares between data points and the error -
function p-V equation, Eq.( 1).‘ As may be observed from Fig.1, the end-of-inflation point is
quite different from the initial deflation point for most data séts.‘ To accommodate the data
into the analysis based on Eq.(4),’-the initial deflation data point is trahslated horizontally
until it meets the inflation p-V curve, the pressure value of which is then defined as PID
in Eq.'(4), as i’ndiéated in Fig.1, implying that the deflation curve preceded by an inflation
curve is assumed to be the same as the deflation curve of data sets honzontally translated
until the begmnmg—of—deﬁatlon data point is on the inflation curve.
Fig.2 presents Vi of Eq.(4), predicted from the mechanistic model of the inflation
process, plotted against Vi of the error-function p-V equation, Eq.(1). (For a complete
list of numerical results relevant to the analysis, see Table 1.) A maximum and a minimum
of a difference, Vi (Eq.(4)) — Vi# (Eq.(1)), are 0.1113 [L] and -0.0352 [L] respectively with
an average of the difference = 0.0460 [L]. Agreements are very good in view of the fact
that Eq.(4) predicts the upper volume asymptote of the deflation process in terms of the
conditions predicted by the mechanistic model of the corresponding inflation process; thus
indirectly supporting a certéin degree of validity of the mechanistic model. Also, the fact

that the magnitude of p;p is determined from the horizontal translation of the deflation
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curve indicates that the deflation process may be relatively insensitive to the inﬁétion
history prior to p = p;p. O;l the other hand, Eq.(4) for V,}i contains p;p as variable for
specified inflation conditions; indicating that the magnitude of V¢ (i.e. the shape of the
deflation curve) changes as the end-of-inflation pressure is varied. A similar étatement
 has been made previously by Jonson [2]. A closér examinafion of Fig.2 indicates that
the mechanistic model slightly underpredicts V¢ compared to that of the error-function
equation for most of data sets. This could indicate either a quantitative lumtatlon of the
mechanistic model or the effects of the inflation process preceding the deflation. If g is

set to zero, Eq.(4) is reduced to

V@ro=0) = Vu - AV (L~ L@Ep))/2. (4a)

~

Fig.3 plots V% of Eq.(4a) vs V(}i of the error functibn p-V équation for the deflation process.
Agreements are fairly good between the two. Results presented in Fig.3 reflects that the
p-V curve is relhtively_ insensitive to the magﬁitude of §ro; a reason why the antisymmetric
error function p-V equation (for which g is zero) fits well with p-V curves. |
.T,he error function p-V equation’ fits well ndt only with the inflation but also with the
corresponding deﬂatiqn processes as shown in Part I. Therefore, regardless of the actual de-
flation process, we may define AV¢ (AV of the deflation process) as the maximum possible
volume change of a specified TRS during the deflation process; which, in our mechanistic

model, yields the following equation for AV? in terms of the inflation parameters:

AVE =V, (o +1) / N - F(p=7;p)dp;
. 0

= 2L 0+ L), - (5)

Fig.4is AV of deflation, AV, predicted by Eq.(5) plotted against the corresponding AV¢
of error-function p-V equation determined by the method of least squares. (See Table 1
for numerical values.) Agreements between the two are reasonably good for a majority

of data sets, except for six data sets shown in filled circles accompanied by alphabetical
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data numbers. Shown in Fig.5 for the six data sets are their deflation data points and
two p—vV curves; one (dotted) for the error function p-V equation with the method of least
squares ‘applied to determine (A4, pd, AVY, Vi#), and the other (solid) for the error function
p-V equation with (AV¢, 175 determmed from Eqgs.(4,5) and (A%, pd) determined by the -
method of least squares. Two curves are different in their approaches to different high and
low asymptotes. Although agreements of the solid curves (with two adjusting parameters) |
with the data points are not as good as that of the dotted curves (with four adjusting 4
parameters), the errors are small for the solid curves in view of the fact that the magnitude
of AV4 is quite different between the t:WO eurves, indicating that a better underst;nding of
relations between the p-V equation and the corresponding intra-respiratory changes helps

interpret various characterisitcs~of p-V curves accurately.

Interpretation of Inflation p-V Curves based on Mechanistic Model

Fig.6 showe ranges covered by all data sets analyzed in terms of py (the inflection |
pressure of the high-pressure solution), AV (maximum volume available for inflation ir;
the high-pressure solution) and 1/(1+77o) (the fraction of total elemental volume available
for the pop-open mechanism (alveolar recruitment), NV, /AV), all plotted against the non-
dimensional parameter, A. The data sets with their alphabetica.l data 'numbers indicafed
in the figure are those to be analyzed in detail in comparative analyses to follow. (Various
parameters of the six data sets are reproduced as Table 2. Pa.rameters of all data sets
are listed in Table 1 of Part I.) The range of A is between 1.5 and 3.6 except for Data
T (A = 5.47). The six data sets (B, E, M, N, R, T) are different from each other in the

following ways:

1. Data set B, E and N have roughly the same magnitude in both A (=~ 2.65 —2.80) and
AV (=~ 1.55 — 1.68) with significantly different values for po. '

2. Data set E and T have substantially different values of A with py and AV being

approximately the same in magnitude.




3. N and R also show similar characteristics of being different in A and common in pg and'
AV, however, the pair covers lower range in both A a.nd po compared to E and T.

4. E and M are different in terms of the magnitude of AV with pg ~ pom, Ag .~ AM‘

5. T and R represent the data sets with very high and low values of A, respectively.
Figs.7 and 8 are p-V and the corresponding non-dimensional —V curves over their 1.‘a.nges
of measurement for Data Set B; E and Nin (a), Data Set E and T in (b), Data Set N
and Rin (¢) and _ Da,ta.Set E and M in (d). - |
Referring to Fig.’?-'and noting that the dotted (broken) vertical lines are the location
of p = pg (po - Uro), it may be obeerved that the range for the low pressufe solﬁiion,
0 <p < po - ¥ro, in which all elements are active. (unsaturated), is very narrow compe,red
to the range for the high pressure solution with an exception of Data set M, for which the .
measurement does not reach the inflection pressure, pg, with pg - 7o > i5 [emH,0].

The correspondmg non-dimensional (P — V) curves, based on the definitions of V and 7 in

Eq.(1), represent Egs.(2a,b) in the following normalized form:

SﬁSyTo—l)

F < )(I—7+ 1- Yro) — §T02+ 11' 2s m\{z(p)))

V(fro—1<p) = I3(p), o | (6)

The normalization of volume transforms the two 'volume asymptotes, Vyy and Vi, into
V=+4land V = -1 respectively; while, the pressure; p =‘ Do, at the inﬂectien poin'e
is transformed into P = 0. With both the location of py and the volume asymptotes
made common to all p-V curves, the resulting non-dimensional representations in Fig.8
are characterized by a single non-dimensional parameter, A. The pafameter, A, is twice
- the maximum local compliance at p = pé (dV /dB(p = 0) = A/2). Since the compliance

is maximum at the origin of p — V diagram, the first quadrant (V, 5 > 0) in Fig.8 is a

region of decreasing local compliance with pressure; while, the third quadrant (V, ﬁ <0

is a region of increasing local compliance with pressure. The origin (p = 0, V=0) of
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dimensional p-V curves is transformed into F=-1,V(V=0)ona ﬁ-V curve; hence,

the physiological lower limit of 7 is —1.

Fig.8 (a) compares the three data sets, B, E and N, among which the magnitude of pg is
substaﬁtially different with A and AV being approximately the same in magnitude. Three
curves are _very.close to each other because values of A are similar, and the difference
between the three appears as the extent to which the p-V curvés are measured in the
region of decreasing compliance with pressure. In Fig.8 (b) and (c) differences between
the two data sets occur in the magnitude of A (A > Ag, A;Q > AR-)’ resulting in the T-
and N- curves above the E- and R- curves respectively in the first quadrant. Since the
magnitude of pg for the data set T and E are very high _compa.fed to those for N and R,
the region of decreasing compliance covered by the T- and E- curves are narrower than N -
and R. Because both pp and AV are similar in magnitudes between the two data sets in
Fig.8(b) and (c) the shape of p—V curves is very similar to the corresponding p-V curves.
In Fig.8 (d) two data sets with a high value of pg (~ 30 [cmH20]) are ,shown. For the data
set M the high value of py combined with a high value of AV limit the measured range

of the p-V curve in the region of increasing compliance only, compared to the data set E

with a smaller magnitude for AV.

Although the 7 - V diagram helps distinguish differences among p-V curves and
effectively bring out various characteristics of each p-V curve, it is the information from
the elemental distribution that relates various parameters of p-V curves to TRS conditions
quantitafively. On the normalized 7 — V plane of Fig.8 the local compliance at p = 0
(dV/dp (p = 0)) increases with A; while, as the standard deviation, o, is proportional to 1/A
in the normalized number distribution, Eq.(3b), the distribution becomes shariJer and has
a higher peak as A is increased. Fig.9 is a plot of the number distribution (not normalized)
vs the critical pop-open pressure, p, j in {emH,0], for the six data sets analyzed in Figs.7
and 8. The number‘distribﬁtion, dN; /N +dp., is & fraction in the number of eleménts, the

critical pop-open pressure of which ranges between p.; and p,; + dp. jin [1/emH,0]. The
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corresponding equation is Eq.(3a), which indicates that the maximum number of elements
are present at Pej = p — po with its magnitude eqtial to 1/v2r-op (= A/4-pg). As op
decreases the distribution becemes sharper (x 1/0p) and its peak value (x op) larger.
(See Table 2 for the magnitude of op for each data set.) Two distributions are shown in
Fig.9 for each data set, one at p = py (with its peak at p = 0) and the other at p = p; (end-
of-inflation pressure) (with its peak at p = p f — Po). The vertical line, p = pg (ps) for the
distribution at p = po (py) indicates the pressure above which the distribution is truﬁcated.
The dotted parts of the curves, as discussed in Part I,.correspond to the elements that
are open at p = 0. The normal distribution truncated at p.; = 0 and pc j =D (ie. the
solid part of the curves in Fig.9) shifts to the right with an increase in p as more elements '
become open. When p < po, the peak of the distribution lies in the negative range of p, ;.

It should be noted that in Data set M (Fig.9 (c)) the distribution at p = py lies below that

at p= po because the measured range never reached D = po.

An integral of t_he distribution function over the critical pop-open pressure in Fig.9 should
yield various fractions in number of elements (dei)ending on the upper and lower limits of
the integral) at each quasi-static state. Also an integral of a product of the distribution
function and the elemental volume over the critical pop-open pressure should provide us
with such quantities as the volume change due to alveolar recruitment,“due to elastic wall
distension and due to an increase in the saturated elements. The following equations may

be obtained for changes in the number fractions:

Fraction of the number of open elements at P = D: Nopen(p =p)/N ‘

| — p/Po '
Nopenl(\l’l‘) = p) (EA F(p‘) dﬁcj) =v[.[1 +I3(ﬁ)]/2, for p =0, .(70:) "

Fraction of the number of saturated elements at p = p: N, sat.(p = p)/N

Nsar.(p = p) /p/m_;m NN [Is + I3(B)]/2, if po-Tro < P '
—_— e = : = ! . - ’,\ 7b
N o F@)dpe; | 0, if 0 < p < po - Treo. (76)
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Fraction of the number of unsaturated elements at P = P! Nynsat.(p =p)/N

Nunsat.(p = p) - Nope'n — Njat. = { [Il - I4]/27 if po - gTO <p (70)
N N (11 + I3(P)]/2, if0<p < po-Tro
Fraction of the number of opén elements at p = 0: Nopen(p = 0)/N
N, =0 °6. ~ ,
Opengf; ) <E/ FE=-1) chj) =[1 - n]/2 (7d)
0 .

It should be noted that (1.) the equation for Nopen(p)/N does not include the elements
that are open'at p = 0. (2.) the equation for Nyq: (p) /N does not account for the elements
that are open at p = 0 and saturated subsequently. (3.) Nopen(p = 0)/N is a function of
a single parameter, A. (4.) the number fraction of unsaturated elements, Nyneas. (p)/N, is
independent of pressure for pg - ¥70 < p, indicating that as more elements are recruited in
- the region of the high pressure solution the same number of elements are saturated.
Similarly, the following equations are for volume changes as pressure is varied:

Total pop-open: volume: Vjop—open (P = D)

H

[ o Neew®\ AV 1
Voop—open(D = =NV - i = =
pop—op (p P)( NVy ) 2 1+ 70

N [+ @) for p>0. (8q)

Total volume of saturated elements: Vjq:. (p = p)

N .

_ [ AV L+ I3(p)/2, if pofro < p,
0, if 0 < p < po - Yro.

Vsat.(p = p)( = NV()(]- + gTO) : N.gat(ﬁ))

(8b)

Total volume of eléménts open at p = 0 when they are all saturated: Vopen—saz.(p = 0)

~ _ N, =0
Vopcn—sat.(p = 0) ( = NVo¥ro opengs ))

_AV o
2 1+ 70

(1-=1) for polro <p. (8¢c)
A number fraction of open elements, Nopen total (P = p)/N, may be derived from Eqs.(7a)
and (7d) as, '

Nopen total (p = p) <= Nopen (p = O)
N

+

Nopen(p =p)) — 1 +I3(f)')
N N

5 - (9)
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The function, I3(7) deﬁned in Eq.(2), is an error function, the magnitude of which depend's.
on A and po. Therefore, the number fraction of all open elements, Nopen total (p = p)/N,
has the point of antisymmetry at p = pg with two asymptotes of 0 and 1. Fig.10 shows
Nopen total (P = p)/N vs p of the six representative data sets in 'solid lines. Due to the
- antisymmetry with respect to p = po, the fraction, Nopen total (p = p)/N, is exa',ctly equal
to 0.5 when p is equal to py as the peak of the distribution is locateci at p = 0. (See
Fig.9.) Since the 1ocation of p = poYro is the boundary between the low- and high-
pressure solutions éf the p-V equation, all open elements are still active and unsaturated
for p < poYre. The fraction of open e'ler.nentsA at p = pofro is less than 0.2 for four |
data sets other than Data sets R and M for which the fraction is ~ 0.25. As pressure
increases beyond po¥ro, some of the open elements begin to be saturated, the fraction
of Which, Nsat.(p = p)/N of Eq.(7b) is plotted in Fig.10 in broken'lines. The number -
fraction saturated depends on Pro in addition to A and pg. The difference between the
two fractions piottéd in Fig.10 varies with the rﬁagnitﬁdes of the three parameters with
(Nopen totat/N = Nsat./N) at a specified pressure ranging from ~ 0.28 fof Data R to less
than 0.01 for Data T. It should also be noted that the two curves are parallel, indicating
that the rate of increase in the number of saturated elements is equal to the corresponding

rate of opening elements, once pressure exceeds py7ro.

The number fraction of open elements at p = 0, Nopen(p = 0)/N, of Eq.(7d) rep-
resents the percentage of elements that only experience elastic displacement, which may
be interpreted as the elemental fraction representing a noxi—alveolar part of TRS such as
airway tissues as well as a dysfunctional alveolar part which does not respond to the re-
cruitmenf._ Fig.11 depicts_;;he fraction as a function of A, the only parameter affecting the
fraction. As Eq.(7d) shows, the fraction, Nopen(p = 0)/N, ha.s two asymptotes of 0 (as
A — o0) and 0.5 (as A — 0). Fig.11 indicates that the number fraction of open elements
at p=0 is very sensitive to the magnitude of A as its value drops from 0.5 to ~ 0.1 when A

is changed from 0 to 2. It should also be mentioned here that the total volume of elements
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open at p = 0 when they are.all saturated, Vopen—sat.(p = 0) of Eq.(8¢c), depends on three
parameters, A, AV and yrg, of the mechanistic model. The last column of Table 2 lists
Vopen—sat.(p = 0) for the six data sets. Although their magnitudes are small (0.08 (L] or

less), the value varies substantially among the data sets.

As mentioned in Part I, the optimization of the ventilator strategy is required for
patients with acute lung injury in intensive care units in terms of pressure- and volume-
ranges [3 — 5], taking into account such considerations as a change in the recruited volume
with pressure, a rate of recrurtment and overdistension of the resprratory tissues. Results
of the mechanistic model analyses relevant to the resprratory ventllatlon are presented in
Figs.12 and 13. The volume, Vpop—open Of Eq.(82), represents a volume change of TRS
due to the pop-open mechanism-(alveolar recruitment) only (that is, excluding t_he volume
change due to the displacement of piston (elastic tissue distention)); on the other hand,
the volume, Vsa{ of Eq.(8b), is the total volume of saturated elements of TRS. They
both increase as pressure increases along an inflation path Sketched in Fig.12 are p — V
curves (sohd Eq.(2)), p — Vpop—open curves (dotted, Eq.(8a)) and p — Vsat curves (broken,
Eq.(8b)) for the six data sets. The vertical broken line in the figure is the location of
p = po. The intersect between the p— Vo curve and the x axis in the figure is the pressure
at the boundary (= pg¥ro) between the low pressure p-V solution (in which all open
elements are active (unsaturated)) and the high pressure solution (in which a pa.rt of open
elements are saturated). Since both the p — Vpop—open and the p — Vg relations as well as
p—Vi(p > Po Yro) equation are represented by a common function, I3 (7) (= erf(CPp),
C=wA/4,P=p/ps — 1), the pressure at the inflection point, po, is not only the pressure
at which the local compliance, dV/dp, is maximum, but also the pressure location for a
maximum rate of increase in Vpop_apen as well as in V,q; with their gre.dients given by the

following equations;

dVsa:(p) (= dV(p)) _AVA

. —(Cp)?2 7o < p,
ip o 7 exp(— (CP)*) fér poYTo _p
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dvpop—open — 1 . AV A
dp 1+%ro 4po

-exp(— (CP)?) for p>0. (10)

The identity between dV,,:/dp and dV/dp implies tha,t the shape of the p-V curvesl_(in the
range of the high pressure solution) closely répresents thg change in the saturated" volume
rather than the pop-open volume. Since the gradient of Vpop—open is smaller than that of
Viat by a factor of 1/(1 + Jro) (< 1), the magnitude of V4 eventually becomes greater
than that of V;,op;open as pressure increases. Also, 1/(1 + 3ryp), a ﬁ'acfion of the pop-open
volume (= pop-open vdlume/total volume of a single TRS element), may be interpreted
as a gradient ratio of Vpop—open t0 Viqr. A smalmller value of §rg (i.e. smaller piston .stroke
limit) means that the element, once it pops open, reaéhes the saturated state earlier;
hence, for Data T of Fig.12(f) (g9 = 0.289, po fTo = 8.68 [cmH20]) Vias becémes greater
than Vpop—open at a pressure close to pp Yo, while, for Data M of Fig.12(c) (G0 = 0.626,
PoYro = 18.98 [cmHzO]) Vsat does not overtake Vpop‘_open within the measured pressure
range.' The gfédients, dVpop—open /dp between p =»0 and .p = py (=final pressﬁre) (solid).
and dV sat/dp between p = pb Yo and p = py (broken) are plotted in Fig.13 for the six data
sets. The gradients are symmetric with respect to po. The data sets with high gradients
(Data set M, N, T) show high sensitivity of the gradients to pressure chénge near pg. Other
data sets with low gradients, particularly Data set E and R, indicate .that the gradients
(ie. the local compliance) do not change too much over a substantial range in pressure
around pp.

Summary

The mechanistic model of TRS developed in Part 1 is applied to examine p-V curves -
~ (in a form of the error function p-V equation) of patients with ARDS with the following
results: | | |

1. Parameters of the deflation process, V¢ in Eq.(4) and- AV in Eq.(5), predicted by
the mechanistic model of the corresponding inflation process agree well Witil those of

the error function p-V equation for the deflation process (Figs.2, 4), indicating that the
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mechanistic model has a certain validity to.be used for improving our quantitative un-
derstanding‘ of various intra-respiratory conditions, that the shape and characteristics. of
deflation curves depend not so much on the inflation history but on the end-of-inflation
(the onset-of—deﬂatibn) pressure, and that relations between parameters in p-V equation
and TRS éonditions are needed to strengthen our applications of p-V curves in clinical
settings (Fig.5).

2. The non-dimensional p-V curve, 5—V curve, is effective in distinguishing differeﬁceé in
magnitudes of model parameters among different p-V curves (Figs.?, 8).

- 3. In the mechanistic model, the distribution function, Eq.(3), and its change with pressure
are the basis for evaluating alveolar recruitment and the elastic tissue distension. The shape
of the distribution function (the peak value and the standard deviation) is determined by
the magnitude of the non—diménsionél parameter, A; while, the magnitude of the pressure
at the maximum compliance, py, and its locat1on relative to the Tange of the p-V curve |
are the 1mportant factors affecting changes of the distribution with pressure (Egs.(7)(9),
Figs.9,10,11). | .

'4. In addition to A and pg, other parameters of the model, AV, Vi and 71 inﬂuénce the
magnitude and changes of both Vpop—open (volume increase due to alveolar recruitment)
and V,: (total volume of saturated (fully-distended) elements). The shape of the clinjcaliy-
measured p-V curve represent the change in V,,;. The inflection pressure, py, is not orﬂy the
pressure at which the local compliance, dV/dp, is maximum, but also the pressure location
for a maximum rate of increase in V;,op._;pen as well as in Vg (Eqs.(S),(lO), Figs.ll,l?)_.

The mechanistic model of a TRS element presented in this report consist;s of a sfni—
ple piston-spring-cylinder system with the critical pop-open préssure of the element as
distribution parameter. The pop-open -volume (= volume that pops open at the critical
pressure) as well as the spring constant are assumed constant and common to all elements.
More comprehensive and detailed analyses of clinical data‘ as well as advice from clinical

experts are needed to advance the model further and also to make it a practical tool for ~
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N

N understanding various respiratory conditions. However, it is believed that the analyses

presented here show the developments and use of a mechanistic model as a possible new

approach to investigate respiratory systems.




Figure/Table Captions
Table 1. Summary of Deflation Data Analysis.
Table 2. Parameters of Inflation Data Sets Examined

Fig. 1. Data points for inflation (unﬁﬂed) and deﬁation_.(ﬁlled), and the correspondihg ‘
p-V equation of mechanistic model for inflation (I). and the error function
p-V ‘e?:matio'n for deflation (D), |
Prp = pressure at the»inters‘ect of the inflation curve and a line parallel to the x-axis
passing through the initial deflation data point. |

(See Table 1 of Part I (II) for numerical values of parameters for inflation (deflation).)

Fig. 2. V¢ (prediéted from the mechanistic model) vs V¢ (of error-function p-V equation
for deflation).

Fig. 3. V@ (predicted from the mechanistic model with Jrg = 0) vs V¢ (of error-function

p-V equation for deflation).

Fig. 4. AV¢ (predicted from the mechanistic model) vs AV¢ (of error-function p-V

equation for deflation). Letters in the figure = Data No.

Fig. 5. Deflation curves.
triangle = data points, dotted = error function p-V equation with the method of
least squares applied to determine (A%, p§, AV, V),
solid = error function p-V equation with (AV¢, V%) determined from Egs.(4,5)

and (A%, pd) determined by the method of least squares.

Fig. 6. Ranges of parameters of inflation data sets.

(a) po vs A, (b) AV vs A, (c¢) 1/(1 + Yro) vs A. Letters in the figure = Data No.

Fig. 7. Model-based p-V equation.
(a) Data Set B, E and N. (b) Data Set E and T.
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(c) Data Set N and R.  (d)Data Set E and M.

Vertical lines: dotted = pg, broken = pg @\To--

Fig. 8. Non-dimensional (p — V) equation.
(a) Data Set B, E and N. (b) Data Set E and T.
(c) Data Set N and R.  (d)Data Set E and M.

Fig. 9. Distribution of elements.

(2) through (£) for Data Sets B( =(a)), E, M, N, R and T( =(f)).

Fig.10. Number fraction of total open elements, Nopen total (P = p)/N , Vs pressure (solid)
and number fraction of saturated elements, Nsqt, (p = p)/N, vs pressure (broken).

(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).
Fig.11. Number fraction of open elements at p = 0, Nopen(p = 0)/N vs A

Fig.12. p—-V curve (solid, Eq.(2»)), p — Vpop_opgn curve (dotted, Eq..(8a))
and P — Visat curve (broken, Eq.(8b)) for six data sets.
(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).

Letters in the figure = Data No.

Fig.13. dVpop—open/dp [L/C’ITLHgO] vs p [emH,0] (solid)
and dV'sat/dp [L/emH;0] vs p [ermH20)] (broken) for six data sets.
(a) through (f) for Data Sets B( =(a)), E, M, N, R and T( =(f)).




Table 1. Summary of Deflation Data Analysis

a3 v ™ O Yo 2 2 B R o

Data No Al e AV v v
[emH,0] L] [L] (L]
A1, 1.4712 11.410 1.9214 -0.1528  1.7685
2. | 1.7567 17064
B 1. 1.5528 12,975 1.4115 -0.1227  1.2887
2. 1.3405 12808
C 1l 2.3203 14.808 1.1753 10.0800  1.2599
2. ' 1.2525 1.2259
D 1. 1.0772 6.846 2.7012 -0.6096  2.0915
2. 4 . 2.5850 © 2.0572
E 1. 2,204 15.602 0.7009 0.0703  0.7712
2. S 0.7784 - 0.7329
F 1. 1.7995 14.418 1.0476 -0.0527  0.9948
2. o 1.0041 | 0.9252
G 1. 0.9839 8.140 1.2811 0.0454  1.3265
2. 1.6496 | 1.3455
H 1. 0.7147 6.472 2.0772 -1.0349  11.0423
2. 1.1910 1.0053
I 1. 2.1010 14.157 1.4798 0.5637  2.0435
2. 1.9943 1.9784
1. - 1.6600 13.404 1.8960 -0.1250  1.7103
9. - 1.7759 | 1.6858
1. 10577 9.778 1.5070 -0.3657  1.1412
2. 11620 . 1.0860
1. 0.3107 3.151 1.3930 -0.8076  0.5853
2. | | 0.8574 © 0.6206
1. 2.1702 14.989 1.4322 0.1442  1.5764 .
2. 1.4921 15163
1. 0.7220 6.45 2.4020 -1.1900  1.2140
2. 1.1654 L1115
1. 1.0558 10.969 - 1.8684 -0.3195  1.5488
2. 1.6515 14375
1. 1.5406 12.231 0.7461 0.0684  0.8145
2. . | 0.8679 0.8154
1. 1.1691 10.670 1.1801 -0.1515  1.0285
2. 1.0938 0.9857
1. - 0.8643 8.1411 1.8260 -0.4893  1.3366
2. 1.7784 1.2923
1. 2.7458 17.050 2.0015 -0.5673  1.4341
2. | 1.4461 1.3962
1. 4.5056 23.619 1.1748 - 0.1057  1.2805
2. 1.2115 1.2026
1. 2.9735 18.599 2.3404 0.0408  -2.3812
2. 2.5197 | 2.3305

1. Obtained by method of least squares with error function p-V equation

for deflation process.

2. Results from the mechanistic model of inflation process. .
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Table 2. Parameters of Inflation Data Sets Examined

H @ 2 2 © w

| Data A Do AV 1/(1 + Fro) Jro oD Vopen—sat.(p = 0)
2.7304 21.999 1.5559 0.736 0.359 12.857  0.01789
26497 30817 16847 0676 0450 18550 0.02645
2.9972 30.327 4.2463 - 0.615 0.626 16.147  0.04932
2.8046  15.:297 1.6219 0.736 0.358 | 8.704  0.01685
1.6209 16.352. 1.7396 0.711 0.406 16.098 0.07779
5.4708 30.037  1.7694 0.766 0.289 8.761

0.00012

po and op in [emH;0], AV and Vppen—sat.(p = 0) in [L].
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Fig. 9. Distribution of elements.
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Fig.10. Number fraction of total open elements, Nypen total (p =p)/N, vs pressure (solid)

and number fraction of saturated elements, Nyq. (p = p)/N, vs pressure (broken).

(2) through (f) for Data Sets B(=(a)), E, M, N, R and T( =(f)).
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Fig.12. p — V curve (solid, Eq.(2)), p — Vpop—open curve (dotted, Eq.(8a))
and p — Ve curve (broken, Eq.(8b)) for six data sets.
(a) through (f) for Data Sets B( =(a)), E, M,'N, R and T( =(f)).
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Chapter 4. A Mechanistic Model: Part III. Deflation Process

Abstract

The deflation process is different structurally from the p.receding inflation process because
of the absence of the pop-open mechanism and the possibility of airway closure and collapse.
An analysis is made on the ideal deflation process, Vy_iny.(5), which results from the elastic |
decrease‘ of the volume st‘arvting from the end—of-inﬂationv pressure. Comparisons between
the_ actual deflation curve and the corresponding Vj;_;n, 7. curve are made to examine a

degree of airway closure and collapse in terms of the parameters of the mechanistic model.
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Nomenclature

A, piston surface area on which pressure is acting

A Pipt1-9n

B(p) 2+P1p + (F—Pip)/k, Ba.(7).

c() P+1=7r)+ k- (1+ro), Eq.(10).

D)  P+1-Fro, Eq.(9).

F(@»=pp) inflation distribution functions (Eq(2)) at D =P;p

ko . spring constant [N/m] for inflation

ke _ spring constant [N/m)] for deflation

k = ka/k.

N total number 6f TRS elements

N; number of elements at energy level j

D : . _pressure (interpleural pressure difference)

D non-difnensional' pressure, p/pg — 1

De j‘ | critical pressure at which an element, j, ‘pops open’.

Pej Pe;j/Po

PID pressure at the intersect of inflation and deflation processes
after horizontal shift of the deﬂatio.n. curve.

Prp . pip/po — 1

Do pressure at the inflection point for inflation (= (k/As) Uro)

p pressure at the inflection point for déflation

e, pressure at the inflection point after horizontal shift

Ap Doriginal — Pafter shift for horizontal shift of deflation p-V curve

|% volume

Vicing. (D) the p-V deflation equation due to elastic displacement only, Eq.(13)

Vi) N lower (upper) bound of volume for inflation
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Viw)
Vi crease
14
AV
AV

i7d
AV

SRR R

Yo
yr

Uro

Greek symbols:

Superscript:

———

d
Acronym:
ARDS
TRS

lower (upper) bound of volume for deflation
volume decrease from the end of inflation due to elastic displacement
volume of an element j

Vo~ Vi = NVo(fro+1)

Vg -V

elementalvolumedecrease fromtheendofin flation, Eq.(3)

‘pop-open’ volume (= A;7o)

piston displacement of an element j in deflation

displacement from inflation-saturated position at he end of inflation process

piston stroke limit for deflation

= %/As

piston stroke limit

v /Yo

constant of proportionality in p-V equation for deflation

-~ appAV (non-dimensional parameter)

A for deflation
A for deflation after horizontal shift
(8/m)1/2/A, Standard deviation (Eq.(3b))

related to a single TRS element

deflation process

acute respiratory distress syndrome

total respiratory system
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Introduction

The data sets of ARDS patients (Data Source A [1]) previously analyzed for the
inflation process are the only ones with complete inflation-deflation p-V measurements.
However, the inflation and the deflation curves were obtained separately, requiring a hor-
izontal shift of the deflation cﬁrve .so that the end-of inflation pressure becomes equal to
the initial deflation pressure. In the previous discussion, this has been shown to be an
- effective method of analyzing the inflation-deflation process as a whole. Changes in the
parameters of the p-V error-function model equation due to the shift will be presented first
in the analysis section to follow. Based on the analyses of the inflation process, it may be
seen that characteristics of the corresponding deflation process depends on the magnitude
of prp (= end-of inflation pressure = initial deflation pressure), making it difficult to make
quantitative comparisons between two different deflation p-V curves. (The data sets of

ARDS patients range in the magnitude of p;p from 18 to 38 ¢cm H20.)

The analysis based on the mechanistic model will examine an ideal deflation p-V curve
that may be obtained by decreasing the pressure from p;p. Since the pop-open mechanism
is absent for the deflation process, the p-V curve thus predicted by the model is a vol-
ume decrease based on elastic contraction of the elemental volume. The actual deflation

curve and the corrrespondign model-based p-V curve will be compared and discussed after

Analysis.

Analysis

The quasi-static pressure-volume curves are often obtained separately for the inflation
and the deflation processes. In order to examine the two procésses simultaneously, it is
neéessary to postulate a certain relationship between them. Particularly we are interested
in the shape of a deflation curve diréctly preceded by an inﬂatioﬁ curve. Therefore, we
propose that the shape of the deflation curve (measured separately from the cbrresponding

inflation curve) remains the same as it is shifted horizontally along the x (pressure)-axis
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until the starting data-point of the deflation curve lies on the correspondiﬁg inflation curve.
Quantitaively this means that the upper and lower volume asymptotes of the deflation
process, Vi and Vi, remain unchanged before and after the translation of the deflation
curve. (A validity of this aséumption has been presented before.)

Then, the deflation p-V equation before the horizontal translation

Vip— AP)A“V(ngg +Vi)/2) =erf ({zl\d [p% - 1])

becomes, after the translation,

- d d —
Vip) - (Vg +VE)/2) _ er f <_@Ag[p Ap 1]> '
AVa/2 4 pd,
where Ap = Doriginal — Dafter shi 7t with the subscript “a” indicating “after shift”. The
identitity of the right hand side of the equations requires
d d A
e N R )
Do Poq Doa

Therefore, the parameters, Ag and po, before and after the horizontal shift are related by

the following equations:

A= Ad(l - —g—) pd. = 1§ — Ap. | (1)

As shown in the inflation ‘analysis there are two regions in the inflation p-V curves;
an upper pressure region where sonde_.elements are saturated (their piston stroke reached
its limit) and a lower pressure region where all elements are active with the b'oundary
pressure between the two regions, pyoundary, being equal to poyro (i.e. Proundary = ro—1).
Siﬁce the magnitude of Yrg is less than 1, it is reasonable to impose a condition that the
end-of-inflation pressure, p;p, is greater than Dboundary; that is, we analyze the case of
Prp 2 DPboundary With Dyp = the non-dimensional end—of—inﬁation pressure = the non-

dimensional initial deflation pressure =p;p/po — 1.
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| Compared to the inflation process, the volume after deflation to p = 0 often deviates
substantially from zero. Since the volume change is obtained by measuring the exhaled
gas volume combined with the end-of inflation-volume, the non-zero value of the volume
at p = 0 indicates differences between the deflation and the‘ inflation process.

In an ideal deflation process of our mechanistic TRS model for the defla-
tion, each element would reduce its (open) volume against the force from the
spring as the pressure decreases. This deflation process is analyzed below.
The number distribution of elements for a deflation process is fixed in terms of the inflation

distribution function at the the end of the inflation process as,

o {_ aNj N 1 1B — P |
F(p—pID) (_N'dﬁci) = \/57—1_-0_ el'p( 2[—"——_‘0_ ]) | (2)

where ﬁcj =pcj/P0, g = (S/W)%/A-

For each element its volume change is to be evaluated as pressure decreases, and a sum
(an integral) of the elemental volume change over all elements using the elemental number
distribution at the end of the inflation process, Eq.(2), yields the deflation p-V equation
as the volume decreases from the end of the inflation pressure, prp.

During the inflation process, a force balance for an element j at p =p > Dej s,
As(p — pej) = kY; < kyr. (See Fig.1.) Therefore, for the element j with its critical
pop-open pressure, pc;j, the piston stroke limit is reached when p = ~(k/As)§T + Dej
(or p = po Yro + Pejs re(iognizing the relation, (k/As)Jo = po, obtained in the inflation
analysis). |

Then, an element ‘a.t. the end of the infiation process belongs to either one of the
following two cases:

(Case 1) At the end of inflation process of p = pj D, elements are unsaturated (piston

remaining active) if their critical pop-open pressures are in the range of

pIp — Po Uro < Pej < PID-
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(CaseVZ) An element is inﬂation-satureted at p = prp if its critical pop-open pressure,
Dcj, is in the rang.e of |
0 < pej < prp — Po Yro-
Therefore, the volume chenge during the ensuing deflation process must be evaluated for
the two cases separately.
Case 1: PIp — PoYro < Doj Spw (1 e. A<P.; <Pip+1with A = p;p + 1 = firo)
(Elements that are not inflation-saturated at p;p)

Referring to Fig.2 the force balance at p = p (< prp) and at p = p;p are respectively,

PID —P= — (ﬁf“ﬁm)

- PID — Dcj = Z]E(@\T—?’J;iw)

where kg = spring constant for deflation, g’]}i ip = the displacement from the inflation-
saturated position at the end of the inflation process of p = psp. They yield the following
equations for AY’/\'-d (= an elemental Volume change (decrease) from the end of the inflation

process = As(ﬂd yj ;p)) in terms of pressure change from the end of the mﬂatmn as well

as i];i in terms of the inflation pop-open pressure, p.;;

AV =B ), = Al
J k DiD—Dp yj— s

ol e

1 . As As ~
Py )pIp — E—P + = Pei +yr. (3,4)

The range of ﬁ;i is limited by the imposed condition of ﬁ;l < 7% (= piston stroke limit

for deflation). Therefore, Eq.(4) yields the condition for element j to reach the state of

deflation-saturation at p = p as

: k N Ag 1 1
Dej = A (’3% - yr + Ep - AS(E - 'k‘)PID)- - (5)

Also, after the stroke limit is reached the elemental volume change stops at
AT ~d_ o As ’
AVy = AL — Ur + (P10 = pej))- (6)

In summary, for the elements not inflation-saturated (p;p — po Yo < Pej < pIp) the

“stroke limit of 7% is reached (deflation-saturated) for elements satisfying Eq.(5); while,
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Ade for deflation-unsaturated elements,l and deflation-saturated elements are respectively
given by Eqs.(3) & (6).
In non-dimensional representation and referring to Fig.3, for elements with

A<D £<Pp+1,

~

(-A)If P.; > B(=2+Fp+ @—Dip)/k, k=ka/k),

the element, j, is deflation-saturated at 7 =P
with Ade=V0(2+ﬁ,D~ﬁcj), o (7)

(1I-B) If $.; < B,

the element, j, is deflation-unsaturated at p =\§
~ with AV =Vo (5 Dp)/k- (8)

Case 2: 0 < p < prp—pofro (ie. 0< Py < A)
(Eleménts that are inflation-saturated at p;p)

As shown in the inflation @nalys'is,an open element, j, becomes inflation-saturatred
when pressuré during the inflation reaches (pc; + po §ro), which is also the pressure at
which the element becomes free during the deflation (deﬂation—uﬁsaturated). (See Fig.4
(a), (b).) Therefore, at p = p in the deflation process, |

the element, j, is inflation-saturated if 0 < p.; < p — po Yro-

the element, j, is deflation-unsaturated if p — po Y7o < pc; -

From the force balance at p = p for a deflation-unsaturated element, the elemental \}olume
change during the process from p;p to p is shown to be
AT} = 4,3
= (A3/ka) (pej + po Tro — p).
The element becomes deflation-saturated at i];i = 3% (Fig.4(c)). A force balance applied

to-an element at the onset of the deflation saturation is

(pej + o Uro) — p = (ka/As) - T2
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Hence, the elements with p.; > (k4/As) - ii% +p— ;bo Yo are deflation-saturated with its
volume change bieing stopped at Ade = \70‘(1 + Yr0)-
In summary, for an element, j, with their critical pop-open pressure in the fange of
0 < De; < A (element that is inflation-saturated at Prp) |
(2-A)If 0<p,; < D) (=F+1—ro),

the element remains inflation-saturated at 5 =7
; d
with AV =0, _ (9)

(2B)If D<p.;<C@E (=P+1—Fro+k-(1+7Tro),

the element is deflation-unsaturated at p =7

A~

. <5 V -~ S~ — | :
with AV# = f" (Bej + Jro — (B +1)), (10)
2-C)If C <Py <A,

the element is deflation-saturated at p =7
with AV? = Vo(1+ r0), | (11)
A sum of the elemental volume change, AI’/\;-d, over all elements yields the volume

decrease from the end of the inflation process due to elastic displacement only, V& (5);

that is,

Vd‘icrease(ﬁ) = / Av;d dNJ

a.ll NJ'
= / N AdeF (Prp) de
all pej
Brotl AV
= NVo —=L \F(B;p) dpe. ;
/o 0( 7 ) (P1p) dp J
AV [ 4 AVE ‘
== = F— dAc'
1+§T0 A ( VO )CaseZ (pID) Pej

FBiptl AT
J - .
+_/ ( )caselF(pID)dpcé} (12)

Vo
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where (A‘l/\}d/f/\b) may be found from Egs.(7)-(11) as function of p,; and 7.
Then, Vi_inf(D), defined as the p-V deflation equation due to elastic displacement

only, may be expressed as

Vd—inf (ﬁ) = Vinflation (f)‘ = ﬁID) - V:icfacrease(ﬁ) (13)

where Vin fiation (P = Drp) is the volume at the end of the preceding inflation process.
Because of the complexity associated with the intégrals in Eq.(12), de_m 7(D) is evaluated
computationally. Also, the ratio of spring constant, 75, between the inflation and the
deflation process needs to be specified. Since the idealized deflation process, Vg_ins vs p
curve, starts at the end-of-inflation pressure, and ends at p = 0, with V;, flation = Vi—inf
at both ends of the process, the_magnitude of k is determined by satisfying the condition

of ~Vinfafa:‘,z'on (p = 0) = Vd~inf (p = O) .

The computational procedure is'ogtlined below.
Input Data: A, AV, po, Vi, pip, ¥ro.
1. Find the value of k.
1-1. Assign an initial guess value for k.
1-2. Evaluate Vg_ins(p = 0) from{ Egs.(12),(13).
1-3. If | Vy_ins(p = 0) — Vinflation(p = 0)| < € (= convergence criterion << 1),
% is found.
If not,
let k(new) = k(old) + Ak (A% = increment for computational iteration)
and
repeat Step 1-2 and 1-3 until convergence is achieved.

2. Evaluate p — Vy_inys curve from Eqs.(12),(13) over the range of 0 < p < p;p.
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Results and Discussion

As noted before, the volume change in the deflation process is obtained by subtracting
the méasured exhaled gas volume from the end-of-inflation volume; hence, the non-zero
value of the volume at the end of the deflation process at p = 0 may be indicative of the
gas volume trapped in :the TRS ¢aused by such effect as airway closure. We evaluate the
volume change, Vy_ins, of an idealized deflation process in which the elemental volume
change from the conditions at the end of the inflation process is solely due to the elastic
deflation (= piston displacement as the spring expands with a decrease in preséure).

Table 1 lists inflation parameters of the mechanistic model (A, py, AV, §ro), AV
(= AV of deflation), A%, and pg, (A and po of the deflation process after the horizontal
shift), a ratio of the volume at the end-of-inflation preséure, V(pip), to AV?, and the
spring constant ratio, % (= ki/k = kdefiation/Kinflation) for twenty one sets of Data
Source A. The p-V deflation curves of the twenty one sets are also shown in Appendix,
in which the solid curve is the deflation curve after the measured p-V deflation curve is
horizontally translated so that Dend—of —inflation = Pinitialde flation; While, the dotted curve
is the computed results of the -ideal p-V deflation curve predicted from the mechanistic
model. |

Both A and py decrease from the inflation to the deflation process as a result of the
structural differences between the two processes. Negative values for A%, are shown in
some data sets of Table 1 due to a horizontal shift of the original deflation curve to the
left on p-V diagram. (See Eq.(1).)

Data G in Table 1 is, 4 |
Data A po AV o AVE Al pd,  V(pip)/AVE &

G. 1.9277 20.731 2.8704 0.447 1.281 -0.4288 -3.547  1.008 0.30
Fig.5 shows Data G of Table 1 (the p-V deflation curve after the hofizontal si]jft (solid) and
the corresponding ideal p-V deflation curve (dotted)). A large positive value of Vs (p = 0)

suggests a substantial airway closure during the deflation. In terms of numerical values it
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is ,due to combined effects of
1. a negative value of pga,
2. a substantial drop from AV (= 2.8704) to AV¢ (= 1.281), |
3. V(prp)/AV? of approximately 1. |

2.5

------- (V DInfl)
- | —— (V Def) .

2.0 ' | -

0 5 10 15
Pressure [cm H O]

Fig. 5 Deflation analysis of Data G
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Data I (Fig.6) also shows a large residual volume at p = 0. The shape ofthe curve is

. quite different from that of Data G. A substantial change from AV (= 2.7508) td AV (=
1.430), as well as a high value of V(p;p)/AV? are similar to Data G; however, both A4

and pd, are high in magnitude.

Data A po AV Pro  AVE Al pdy  Vipp)/AVE R
1. 3.5449 25.232 2.7508 0.368 1.480 2.0066 _13.521 1.338 0.27
2.5
e (V Dinf)
——(V Def) |

Volume [L]

-

0.0 1 1 ’ | 2 ! 1
0 10 20 30 40

Pressure[cm H,Ol

Fig. 6 Deflation analysis of Data I
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Other data sets with negative pd, are Data H, L, N, shown in Fig.7, all characterized
by a small pressure range compared to the data with positive pd,. The deflation curve
(after the horizontaléhift) of Data L, in particular, indicates small volume change with
the decrease in pressure; which is due to a large nega-‘tive,value of p¢,. Compared to Data G
their values of V(prp)/ AVd are smaller than 1.0. Also noted is an increase in magnitude

from AV to AV? for all three sets with a negative value of pg_.

‘Data A o AV Frg AVE Al pd,  V(pip)/AVE %
H. 2.0421 15.405 1.7129 0.431 . 2.077 -0.6247 -5.657  0.466 0.30
L. 1.5318 13.213 1.1256 0.695 1.393 -1.8841 -18.696 0.411 0.41
N. 2.8046 15.297 1.6219 0.358 2.402 -0.4079 -3.644 0.458 0.26
25 —— S 25 - .
--------- (VDInf)} L [ === (V Dinfl)
[ [——(V De) : ——(V Def)
2ol ' 20}
F S
sl :'_1.5-
b g
§ 1o}
% l 40 o0 == ™ 20 ‘ %
P'ressure fem H,0) Pressure fcm H,0}
25
| [ (V Dinf)
—— (V Def
20}
_\sf
-
E
- 0.0 fuel .'-. T r T * T T
0 10 . 20 .30 © 40

" Pressure [cm H,0]

Fig. 7 Deflation analysis of Data H, L, N
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Data D and K afe similar; i.e. a small change between AV and AV? with the deflation

parameters, Aﬁf and pg,, being roughly the same. However, the difference between the V¢

and Vy_ins is large in Data D and very small in Data K. In other words, the difference

between two curves in D and K is due to a magnitude of E, which affects the shape of

the p-Vy_inf curve. A high value of k in Data K results in negligible effects of the airway

Closure.
AV
D.  1.0257 13.999 2.8392 0.379
K. 2.4708

Data A Do Yo

25

17.951 1.3304 0.440

--------- (V Dinf)
F [——(V Def)

20

bnd
n

VolumelL]
5

0.5

- 0.0 - 1 . . A !

0 10 -2 30
Pressure [cm H,0]

AVe Al o, Vipip)/AVE %
2701  0.7625  4.846  0.752 0.27
1173 0.6000 5.549  0.645 1.11
40
25
--------- (V Dinf)
[ |——(V Del)
20 -
._1.5-
§1.o-
"0.0 """"""""" 3 N I . 1 N
[+ 10 .20 30 40

Pressure [cm H,0]

Fig. 8 Deflation analysis of Data D, K
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Finally discﬁssed is Data T, a data set with very high values for both A and pg in the .‘
inflation curve as well as for both A% and pg, in the correéponding deflation curve. This
is the only data in Which’the solid p — V' (after horizontal shift) curve is located below the
dotted ideal p — V' curve over a majority of the pressure range. This may imply that the
airway as well as alveoli are collapsing at a rate faster than the elemental elastic deflation

predicted by the ideal curve with a very small amount of trapped air.

Data A o AV o AVE Al Cpd Vipp)/AVE &
T.  5.4708 30.037 1.7694 0.289 1.175  3.9600 20.759 1.037 0.22
25
--------- (V DInf)
| —— (V Def) | -
2.0 |
15 |
=
S ¢))
£
=
(@]
>

; P
Pressure [cm H,0]

Fig. 9 Deflation analysis of Data T
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Summary and Conclusions

- An analysis is made on the ideal deflation process, Vy_;n 7.(P), which results from the
elastic decrease of the volume starting from the end-of-inflation pressure in the mechdnistic
model. A comparison between the actual deflation curve and the corresponding Vy_;n 7.
curve is made to examiﬁe a degree of airway closure and collapse in terms of the pararheters
of the mechanistic model. A very large value of Aff (> 4) is accompanied by large airway
collapse without trapped air; while, the data with P (ratio of spring constant between the
deflation and the preceding inflation) of the order of unity shows negligible effects of airway
closure on the deflation curve. The differences between the measured deflation curve and
the corresponding ideal déﬂation curve, Vy_iny., evaluated from the mechanistic model4as
a degree of airway closure deperid on the relative magnitude of AV and AV4, of pg, and
pIp, as well as the magnitude (positive or negé,tive) of pd..

The deflation process yields a new set of information that may not be obtained from the
analyses of the inflation process. Results obtained in this chapter, if combined with those
from previous chapters, may distinguish p-V data sets beyond what may be achieved by
examinations of their original raw dafa’. In this chapter our déta analyses are limited to the
data sets from ARDS patients [1] because of data availability. The p-V curve analyses had
been made in the past to examine normai and diseased lungs (2, 5], patients with chronic
airflow obstruction (COPD) (3], of asthma [4], as well as an indicator for the protective
ventilator strategy [6,7]. The next step in our study should be aimed at establishing a

relationship between various respiratory diseases, their p-V curve characteristics and the

predictions based on the mechanistic model.




\ : L Table 1. Summary of Data Analysis.

Data A po AV fro  AV¢ A pé,  V(pp)/AVE &
A. 2.9578 - 22.411 2.3772 0.347 1.921 1.0899 8.453 0.881 0.26
B. 2.7304 21.999 1.5559 0.359 1.412 1.1220 9.375 0.889 0.52
C. 3.3664 25.073 1.6139 0.329 1.175 1.7935 11.402 1.055 0.24
D. 1.9257 13.999 2.8392 0.379 2.701 0.7625 4.846 0.752 0.27
E. 2.6497 30.817 .1.6847 0.480 0.701 1.8794 13.302 1.024 0.32
F. 2.6423 23.863 1.4874 0.365 1.048 1.5973 12.798 0.863 0.26
G. 1.9277 20.731 2.8704 0.447 1.281 -0.4288 -3.547  1.008 0.30
" H. 2.0421 15.405 1.7129 0.431 2.077 -0.6247 -5.657 0.466 0.30
L 3.5449 25.232 2.7508 0.368  1.480 2.0066  13.521 1.338 0.27
J. 2.7364 26.830 3.9129 0.474 1.896 1.2389 10.004 0.816 = 0.34
K. 2.4708 17.951 1.3304 0.440 1.173 0.6000 v5.549 0.645 1_.11
L. 1.5318 13.213 1.1256 0.695 1.393 -1.8841 -18.696 0.411 041
M. 2.9972 30.327 4.2463 0.626 1.432 1.7691 12.219  0.987 0.38
N. 2.8046 15.297 1.6219 0.358  2.402 -0.4079 -3.644 0.458 0.26
0. 2.1412 18.837 1.7753 0.389  1.868 1.1520 11.969 0.755 - 0.28
P. 2.4553 27.032 1.3278 0.467 0.746 1.3643 10.831 1.057 0.31
Q.  2.2041 19.583 1.2941 0.389 1.180 0.9500 8.670 0.823 0.28
R. 1.6209 16.352 1.7396 _0.406 1.826 0.9705 9.141- 0.687 0.28
S. 3.0894 26.925 3.1878 0.407 2.002 1.3818 8.580 0.672 0.28
T. 5.4708 30.037 1.7694 0.289 1175 3.9600 20.759  1.037 0.22
U. 3.2819 24.349 2.8956 0.327 2.340_ 2.8456 17.799  0.995 0.24

1. V and AV in [L], P in [emH,O0].

2. Inflation parameters from the mechanistic model.
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Appendix

(The p-V deflation curve after the horizontal shift (solid) and

the corresponding ideal p-V deflation curve (dotted))
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Key Research Accomplishments

- 1. The representation of p-V curves by a single (non-linear) model equation (either the
error function p-V model equation or the sigmoidal model equation) is confirmed to
be an effective method for clinical data analyses.

2. A mechanistic model is constructed for the inflation process; which makes it possible
to predict the internal conditions of the respiratory system from the p-V curve. The
model of the inflation process also predicté the upper volume limit of the deflation,
V¢, the magnitude of which agrees well with the values deterﬁlined from the measured
deflation curves; thus, justifying the method of our model development.

3. A mechanistic model is derived for an ideal deflation process in which the elastic (non-
pop-open) contraction is tlhe only mode of volume decrease. The ideal p-V curve is
compared to the corresponding measured p-V deflation curve with their differences

interpreted. in terms of the inflation and deflation parameters in relation to airway

closure and collapse during the deflation process.
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Conclusions

It is confirmed that both the sigmoidal (tangent hyperbolic) p-V model equation and
the error function model equation represent quasi-static p-V curves extremely well. The
error function p-V model equation is of the form,

“xrt =gl ()

where AV = Vy — VL, A = apo AV (o = proportionality constant), p = p/py — 1. The
curve varies smoothly between the low pressure asymptote, V7, and the high pressure
asymptote, Vy. The midpoint of the curve is the inflection point with its pressure denoted
by po. All clinical p-V curves made available to us, ranging from healthy humans to ARDS
patients, are represented well by the model equation with differences between data sets ex-
pressed quantitatively in terms of the magnitudes of the non-dimensional parameters in the
model equation as well as the pressure range of the data relative to the midpoint pressure,
po. Mathematical processing of data using the continuous model equation makes exami-
nations of p-V curve characteristics easier and more accurate, compared to the piecewise
representations by previous investigat'.ors. We found from the literature survey and data
examinations that there is no standardized procedure for p-V curve measurements. For ex-
ample, some published data cover only a very narrow pressure range; while, others do not
measure the esophagus pressure as'the lung pressure (not the interpleural pressure) is used
for the pressure scale. Differences in the p-V curves may be observed qualitatively upon

visual comparisons between a healthy human and an ARDS patient; however, in terms
~ of the model parameters, quantitative differences may be detected among healthy adults
as well as among ARDS patients that may not be accomplished by the visual inspection
alone.

A mechanistic model of TRS (total respiratory system) elements, each consisting of a
piston-spring subsystem in a chamber, is developed to relate the p-V curve characteristics
to the internal change of the corresponding TRS. The mechanistic model accommodates
both the alveolar recruitment (in terms of the pop-open pressure) and the elastic dis-
tension of wall tissues (in terms of piston displacement). A (critical) pressure at which
an element (pop-) opens is different from element to element; which yields the following
normal distribution for a large number of elements over the critical pop-open pressure:

ANy o N 1 Pej = P2
N-dp,; F(p), F(p) = Voro '6$P(—§[—a”‘] )-
where dV; = number of elements, the critical pop-open pressure of which lies between Dej
and pcj + dpcj, N = total number of TRS elements and p.; = p.;/po. The distribution
has its mean at p (= p/po — 1) and its standard devistion, o, being related to the non-
dimensional parameter, A, of the p-V model equation as ¢ = (8/ 71')% /A . Each element at

149
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a specified pressure is in a state between closed conditions and fully-distended (saturated)
conditions. As the pressure (p) increases along an inflation process more elements are
recruited and open elements are distended, thus increasing the number of open as well as
saturated elements. The magnitude of py (pressure at the maximum compliance) and its
location relative to the range of the measured p-V curve are shown to be important factors
affecting changes of the distribution with pressure. Other parameters of the p-V model
equation influence the magnitude and changes of both Vpop—open (volume increase due to
alveolar recruitment) and Vigiurateq (total volume of saturated (fully-distended) elements),
two quantities important for the optimization of ventilator strategy. Parameters, V(‘} and
AV? (superscript indicating the deflation process) that are predicted from the mechanistic
model for the preceding inflation process agree well with those of the measured p-V curves
of the deflation; thus providing justification for the validity of the mechanistic model.

The (pop-open) alveolar opening mechanism is absent for the deflation process; in-

stead, the closure and collapse of the airways affect the p-V curves. The modeling approach
to the deflation process is to compute an ideal process of deflation by the elastic contrac-
tion of TRS elements as the pressure is decreased. The difference in the volume decrease
between the measured and the ideal deflation curve indicates the effects of the airway clo-
sure on the deflation process. The deflation model is computationally performed due to
complexities associated with the integrals involved. Comparisons between the measured
deflation curves of ARDS patients and the corresponding ideal deflation curve, evaluated
from the mechanistic model indicate; »

A very large value of A? (> 4) is accompanied by large airway collapse without
trapped air. '

A data set with & (ratio of spring constant of TRS elements between the deflation
and the preceding ihﬁation) of the order of unity shows negligible effects of airway
closure.

A degree of airway closure depends on the relative magnitude of AV and AV?, of pg
and prp, as well as the magnitude (positive or negative) of pg.

It is believed that the analyses presented in this report show the developments and use
of the mechanistic model as a new, effective approach to investigate respiratory systems
of patients with acute lung injury. Comprehensive data analyses based on the mechanistic
model are made for twenty one data sets of ARDS patients, the only available data sets
with complete inflation and deflation p-V curves. The p-V curves had been utilized in the
past to examine normal and diseased lungs, patients with chronic airflow obstruction, of-
asthma, as well as an indicator for the protective ventilator strategy. The next step in our
study should be aimed at establishing quantitative and comprehensive relations between
clinical diagnoses of various respiratory diseases (including the underlying disease of ARDS

patients), their p-V curve characteristics and the predictions based on the mechanistic
model. '
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